TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Laser cutting of carbon fiber reinforced plastic using a 30 kW fiber laser
 
Options

Laser cutting of carbon fiber reinforced plastic using a 30 kW fiber laser

Publikationstyp
Conference Paper
Date Issued
2015-02-01
Sprache
English
Author(s)
Herzog, Dirk  orcid-logo
Schmidt-Lehr, Matthias  
Canisius, Marten  
Oberlander, Max  
Tasche, Jan Philipp  
Emmelmann, Claus  orcid-logo
Institut
Laser- und Anlagensystemtechnik G-2  
TORE-URI
http://hdl.handle.net/11420/7118
Journal
Journal of laser applications  
Volume
27
Issue
S2
Article Number
S28001
Citation
Journal of Laser Applications S2 (27): S28001 (2015-02-01)
Publisher DOI
10.2351/1.4906304
Scopus ID
2-s2.0-84941222843
Today, industrial usage of carbon fiber reinforced plastic (CFRP) is steadily increasing, with an amount of 67 000 ton/yr ["Carbon fibers and carbon fiber reinforced plastics (CFRP) - A global market overview," Report, Research and Markets Ltd., Dublin, Ireland, 2013]. Products such as the Boeing 787 and Airbus A350 in the aerospace sector, as well as the BMW i3 from the automotive industry consist of more than 50% of CFRP in their structural weight. At the same time, these products also have comparatively high production volumes, e.g., >10 000 cars/yr in the case of the BMW i3 ["BMW undertakes global launch of i3 EV," see http://www.ihs.com/products/global-insight/industry-economic-report.aspx?id=1065981621, May 20, 2014]. Therefore, a higher degree in automation and cost-efficiency is needed in production. Due to the highly abrasive carbon fibers, conventional machining processes result in short tool life and high costs. Therefore, laser cutting of CFRP as a wear-free alternative has lately become the focus of several research groups. Two different approaches are commonly chosen: cutting by short- and ultra-short pulsed laser systems to reach a process regime of cold ablation and cutting with continuous wave (cw) lasers at high cutting speeds. For the latter approach, it has already been shown that by increasing power and cutting speed, the heat affected zone (HAZ) can be reduced due to less time allowed for heat conduction [Bluemel et al., "Laser machining of CFRP using a high power laser - Investigation on the heat affected zone," in Proceedings of 15th European Conference on Composite Materials, Venice, Italy (2012)]. Graf and Weber introduced a perpendicular heat flow model, calculating that the required intensity to cut 2 mm of CFRP with a HAZ of 10 μm using a cw laser is 109W/cm2. The required cutting speed is 8.3 m/s [T. Graf and R. Weber, "Laser applications from production to machining of composite materials," in Proceedings of EALA, Bad Nauheim, Germany (2012), pp. 289-299]. In this paper, experiments using an ultra-high power fiber laser system of 30 kW to cut CFRP laminates are presented. Although it is not possible to fully achieve the intensities proposed by Graf and Weber, the intensities of approx. 108W/cm2 of the setup still allow for a practical validation of the CFRP cutting at very high laser power. Due to the high intensities, high cutting speeds per laser pass are necessary. A special experimental setup is chosen with a rotational movement of the specimen, reaching a feed rate of 85m/s. The heat affected zone was considerably reduced to 78μm with the 30kW system, 10% lower than with a 5kW system under comparable conditions. Although today no scanner systems are available that could handle these high intensities at such high cutting speeds, the experiments still show that processing of CFRP with cw laser systems at highest power has a potential in order to reduce the heat damage to the material.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback