TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A novel approach to determine wet restitution coefficients through a unified correlation and energy analysis
 
Options

A novel approach to determine wet restitution coefficients through a unified correlation and energy analysis

Publikationstyp
Journal Article
Date Issued
2015-03-01
Sprache
English
Author(s)
Sutkar, Vinayak S.  
Deen, Niels G.  
Padding, Johan T.  
Kuipers, Hans  
Salikov, Vitalij  
Crüger, Britta  
Antonyuk, Sergiy  
Heinrich, Stefan  
Institut
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
TORE-URI
http://hdl.handle.net/11420/7160
Journal
AIChE journal  
Volume
61
Issue
3
Start Page
769
End Page
779
Citation
AIChE Journal 3 (61): 769-779 (2015-03-01)
Publisher DOI
10.1002/aic.14693
Scopus ID
2-s2.0-84922604182
Wet particle interactions are observed in many applications, for example, pharmaceutical, food, agricultural, polymerization, agglomeration, and coating, in which an accurate evaluation of the wet restitution coefficient (ewet) is crucial to understand the particle flowability, operating conditions and product size distribution. Experiments were performed to measure the wet restitution coefficient by impacting a spherical particle on a stationary plate covered with a thin liquid layer of water or glycerol solution in this work. Furthermore, novel approaches for estimation of ewet were developed using dimensional analysis (using the Buckingham π theorem and regression analysis) in combination with energy budget analysis. In the correlation development, the dominant physical properties of solid and liquid, particle impact velocity and liquid layer thickness are grouped into well-known dimensionless numbers viz. Reynolds, Weber and Stokes. Whereas in the energy analysis, the energy dissipation rates were determined for five distinct collision phases, that is, dipping, dry collision, undipping, formation and breakage of the liquid bridge, and added mass. The efficacy of the developed approaches was analyzed by comparing obtained results with experiments and an elastohydrodynamic model, and a modified elastohydrodynamic model.
Subjects
Correlation and energy approach
Fluidized bed granulator
Wet particle interaction
Wet restitution coefficient
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback