TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Weighted spaces of vector-valued functions and the ε-product
 
Options

Weighted spaces of vector-valued functions and the ε-product

Citation Link: https://doi.org/10.15480/882.2930
Publikationstyp
Journal Article
Date Issued
2020-06-16
Sprache
English
Author(s)
Kruse, Karsten  orcid-logo
Institut
Mathematik E-10  
TORE-DOI
10.15480/882.2930
TORE-URI
http://hdl.handle.net/11420/7406
Journal
Banach journal of mathematical analysis  
Volume
14
Issue
4
Start Page
1509
End Page
1531
Citation
Banach Journal of Mathematical Analysis 4 (14): 1509-1531 (2020-09-01)
Publisher DOI
10.1007/s43037-020-00072-z
Scopus ID
2-s2.0-85086572387
ArXiv ID
1712.01613
Publisher
BMRG
We introduce a new class FV(Ω , E) of weighted spaces of functions on a set Ω with values in a locally convex Hausdorff space E which covers many classical spaces of vector-valued functions like continuous, smooth, holomorphic or harmonic functions. Then we exploit the construction of FV(Ω , E) to derive sufficient conditions such that FV(Ω , E) can be linearised, i.e. that FV(Ω , E) is topologically isomorphic to the ε-product FV(Ω) εE where FV(Ω) : = FV(Ω , K) and K is the scalar field of E.
Subjects
Linearisation
Semi-Montel space
Vector-valued functions
Weight
ε-product
DDC Class
510: Mathematik
Funding(s)
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

Kruse2020_Article_WeightedSpacesOfVector-valuedF.pdf

Size

3.01 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback