Please use this identifier to cite or link to this item:
Publisher URL:
Title: Teaching machine learning and data literacy to students of logistics using Jupyter Notebooks
Language: English
Authors: Kastner, Marvin  
Franzkeit, Janna  
Lainé, Anna 
Editor: Zender, Raphael 
Ifenthaler, Dirk 
Leonhardt, Thiemo 
Schumacher, Clara Sophia 
Keywords: Jupyter Notebooks;Code Literacy;Data Literacy;Machine Learning;Data Science;Logistics;Supply Chain
Issue Date: Sep-2020
Publisher: Gesellschaft für Informatik e.V.
Source: Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V. (DELFI 2020)
Part of Series: GI-Edition 
Volume number: P-308
Abstract (english): 
Teaching machine learning in fields outside of computer sciences can be challenging when the students do not have a solid code knowledge. In this work, the requirements for teaching data literacy and code literacy to students of logistics are explored. Specifically, the use of Jupyter Notebooks in a machine learning course for students in logistics is evaluated, using “Teaching and Learning with Jupyter” written by Barba et al. in 2019 that lists several teaching patterns for Jupyter Notebooks.
Conference: DELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V. 
DOI: 10.15480/882.2943
ISBN: 978-3-88579-702-9
Institute: Maritime Logistik W-12 
Softwaresysteme E-16 
Document Type: Chapter/Article (Proceedings)
More Funding information: Bundesministerium für Bildung und Forschung (BMBF)
Project: Maschinelles Lernen in Theorie und Praxis 
License: CC BY-SA 4.0 (Attribution-ShareAlike 4.0) CC BY-SA 4.0 (Attribution-ShareAlike 4.0)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
365 DELFI2020_paper_35.pdfPoster description112,27 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Sep 24, 2021


checked on Sep 24, 2021

Google ScholarTM


Note about this record

Cite this record


This item is licensed under a Creative Commons License Creative Commons