Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2946
Publisher DOI: 10.37236/8611
Title: A dirac-type theorem for berge cycles in random hypergraphs
Language: English
Authors: Clemens, Dennis  
Ehrenmüller, Julia 
Person, Yury 
Issue Date: 21-Aug-2020
Publisher: EMIS ELibEMS
Source: Electronic Journal of Combinatorics 3 (27): 3.39, 1-23 (2020)
Journal or Series Name: The electronic journal of combinatorics 
Abstract (english): A Hamilton Berge cycle of a hypergraph on n vertices is an alternating se-quence (v1, e1, v2, …, vn, en) of distinct vertices v1, …, vn and distinct hyperedges e1, …, en such that (Formula Presented) and (Formula Presented) for every i ∈ [n − 1]. We prove the following Dirac-type theorem about Berge cycles in the binomial random r-uniform hypergraph H(r)(n, p): for every integer r ≥ 3, every real γ > 0 and p ≥ln17rnr−1n asymptotically almost surely, (every)spanning(r−1) subgraph (Formula Presented)) with minimum vertex degree δ1(H) ≥2r−11 + γ pn contains a Hamilton Berge cycle. The minimum degree condition is asymptotically tight and the bound on p is optimal up to some polylogarithmic factor.
URI: http://hdl.handle.net/11420/7426
DOI: 10.15480/882.2946
ISSN: 1077-8926
Institute: Mathematik E-10 
Type: (wissenschaftlicher) Artikel
Funded by: YP was supported by DFG grant PE 2299/1-1.
License: CC BY-ND 4.0 (Attribution-NoDerivatives) CC BY-ND 4.0 (Attribution-NoDerivatives)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
8611-PDF file-33188-1-10-20200814.pdfVerlags-PDF402,1 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

61
Last Week
1
Last month
checked on Nov 28, 2020

Download(s)

14
checked on Nov 28, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons