TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. A dirac-type theorem for berge cycles in random hypergraphs
 
Options

A dirac-type theorem for berge cycles in random hypergraphs

Citation Link: https://doi.org/10.15480/882.2946
Publikationstyp
Journal Article
Date Issued
2020-08-21
Sprache
English
Author(s)
Clemens, Dennis  orcid-logo
Ehrenmüller, Julia  
Person, Yury  
Institut
Mathematik E-10  
TORE-DOI
10.15480/882.2946
TORE-URI
http://hdl.handle.net/11420/7426
Journal
The electronic journal of combinatorics  
Volume
27
Issue
3
Start Page
1
End Page
23
Article Number
3.39
Citation
Electronic Journal of Combinatorics 3 (27): 3.39, 1-23 (2020)
Publisher DOI
10.37236/8611
Scopus ID
2-s2.0-85090514381
Publisher
EMIS ELibEMS
A Hamilton Berge cycle of a hypergraph on n vertices is an alternating se-quence (v1, e1, v2, …, vn, en) of distinct vertices v1, …, vn and distinct hyperedges e1, …, en such that (Formula Presented) and (Formula Presented) for every i ∈ [n − 1]. We prove the following Dirac-type theorem about Berge cycles in the binomial random r-uniform hypergraph H(r)(n, p): for every integer r ≥ 3, every real γ > 0 and p ≥ln17rnr−1n asymptotically almost surely, (every)spanning(r−1) subgraph (Formula Presented)) with minimum vertex degree δ1(H) ≥2r−11 + γ pn contains a Hamilton Berge cycle. The minimum degree condition is asymptotically tight and the bound on p is optimal up to some polylogarithmic factor.
DDC Class
510: Mathematik
More Funding Information
YP was supported by DFG grant PE 2299/1-1.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nd/4.0/
Loading...
Thumbnail Image
Name

8611-PDF file-33188-1-10-20200814.pdf

Size

402.1 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback