Please use this identifier to cite or link to this item:
Publisher DOI: 10.1126/sciadv.aba1483
Title: Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
Language: English
Authors: Brinker, Manuel 
Dittrich, Guido 
Richert, Claudia 
Lakner, Pirmin 
Krekeler, Tobias 
Keller, Thomas F. 
Huber, Norbert 
Huber, Patrick  
Keywords: Physics - Mesoscopic Systems and Quantum Hall Effect;Physics - Mesoscopic Systems and Quantum Hall Effect;Physics - Materials Science;Physics - Soft Condensed Matter;;Physics - Chemical Physics
Issue Date: 30-Sep-2020
Publisher: American Association for the Advancement of Science
Source: Science Advances 40 (6): eaba1483 (2020)
Journal: Science advances 
Is supplemented by: Giant Piezoelectrolytic Actuation in a Nanoporous Silicon-Polypyrrole Hybrid Material
Is supplemented by: 10.15480/336.2753
Abstract (english): 
The absence of piezoelectricity in silicon makes direct electro-mechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is 3 orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimetre cross-section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4-0.9 V) along with the sustainable and biocompatible base materials make this hybrid promising for bio-actuator applications.
DOI: 10.15480/882.3001
ISSN: 2375-2548
Institute: Werkstoffphysik und -technologie M-22 
Betriebseinheit Elektronenmikroskopie M-26 
Center for Integrated Multiscale Material Systems M-2 
Document Type: Article
Project: SFB 986: Teilprojekt B7 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen 
SFB 986: Teilprojekt B4 - Mikromechanisches Materialverhalten hierarchischer Werkstoffe 
SFB 986: Zentralprojekt Z3 - Elektronenmikroskopie an multiskaligen Materialsystemen 
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
eaba1483.full.pdfVerlags-PDF881,67 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Jul 23, 2021


checked on Jul 23, 2021


Last Week
Last month
checked on Jul 23, 2021

Google ScholarTM


Note about this record

Cite this record


This item is licensed under a Creative Commons License Creative Commons