Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3001
Publisher DOI: 10.1126/sciadv.aba1483
Title: Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
Language: English
Authors: Brinker, Manuel 
Dittrich, Guido 
Richert, Claudia 
Lakner, Pirmin 
Krekeler, Tobias 
Keller, Thomas F. 
Huber, Norbert 
Huber, Patrick  
Keywords: Physics - Mesoscopic Systems and Quantum Hall Effect;Physics - Mesoscopic Systems and Quantum Hall Effect;Physics - Materials Science;Physics - Soft Condensed Matter;physics.app-ph;Physics - Chemical Physics
Issue Date: 30-Sep-2020
Publisher: American Association for the Advancement of Science
Source: Science Advances 40 (6): eaba1483 (2020)
Journal or Series Name: Science advances 
Is supplemented by: Giant Piezoelectrolytic Actuation in a Nanoporous Silicon-Polypyrrole Hybrid Material
Is supplemented by: 10.15480/336.2753
Abstract (english): 
The absence of piezoelectricity in silicon makes direct electro-mechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is 3 orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimetre cross-section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4-0.9 V) along with the sustainable and biocompatible base materials make this hybrid promising for bio-actuator applications.
URI: http://hdl.handle.net/11420/7648
DOI: 10.15480/882.3001
ISSN: 2375-2548
Institute: Werkstoffphysik und -technologie M-22 
Betriebseinheit Elektronenmikroskopie M-26 
Document Type: Article
Funded by: Deutsche Forschungsgemeinschaft (DFG)
Project: SFB 986: Teilprojekt C4 - Deposition, Ordnung und mechanische Stabilität von Beschichtungen aus assemblierten Partikeln mit enger Größenverteilung 
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
eaba1483.full.pdfVerlags-PDF881,67 kBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

155
Last Week
7
Last month
43
checked on Feb 28, 2021

Download(s)

80
checked on Feb 28, 2021

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons