Publisher DOI: 10.1007/978-3-030-59713-9_8
Title: 3d-SMRnet: Achieving a New Quality of MPI System Matrix Recovery by Deep Learning
Language: English
Authors: Baltruschat, Ivo-Matteo  
Szwargulski, Patryk 
Griese, Florian  
Grosser, Mirco 
Werner, René 
Knopp, Tobias 
Keywords: Deep learning;Magnetic particle imaging;Single image super-resolution;System matrix recovering
Issue Date: Oct-2020
Publisher: Springer
Source: 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention: 74-82 (2020)
Part of Series: Lecture notes in computer science 
Volume number: 12262 LNCS
Abstract (english): 
Magnetic particle imaging (MPI) data is commonly reconstructed using a system matrix acquired in a time-consuming calibration measurement. Compared to model-based reconstruction, the calibration approach has the important advantage that it takes into account both complex particle physics and system imperfections. However, this has the disadvantage that the system matrix has to be re-calibrated each time the scan parameters, the particle types or even the particle environment (e.g. viscosity or temperature) changes. One way to shorten the calibration time is to scan the system matrix at a subset of the spatial positions of the intended field-of-view and use the system matrix recovery. Recent approaches used compressed sensing (CS) and achieved subsampling factors up to 28, which still allowed the reconstruction of MPI images with sufficient quality. In this work we propose a novel framework with a 3d system matrix recovery network and show that it recovers a 3d system matrix with a subsampling factor of 64 in less than a minute and outperforms CS in terms of system matrix quality, reconstructed image quality, and processing time. The advantage of our method is demonstrated by reconstructing open access MPI datasets. Furthermore, it is also shown that the model is capable of recovering system matrices for different particle types.
Conference: 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2020) 
ISBN: 978-3-030-59713-9
ISSN: 0302-9743
Institute: Biomedizinische Bildgebung E-5 
Document Type: Chapter/Article (Proceedings)
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Dec 5, 2021


Last Week
Last month
checked on Dec 3, 2021

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.