Publisher DOI: 10.1016/j.laa.2014.07.023
Title: Inverses, determinants, eigenvalues, and eigenvectors of real symmetric Toeplitz matrices with linearly increasing entries
Language: English
Authors: Bünger, Florian 
Keywords: Determinant; Eigenvalue; Eigenvector; Inverse; Toeplitz matrix
Issue Date: 7-Aug-2014
Publisher: American Elsevier Publ.
Source: Linear Algebra and Its Applications (459): 595-619 (2014-10-15)
Abstract (english): 
We explicitly determine the skew-symmetric eigenvectors and corresponding eigenvalues of the real symmetric Toeplitz matricesT=T(a,b,n):=( a+b|j-k|)1≤j,k≤n of order n≥3 where a, b ∈ ℝ, b ≠0. The matrix T is singular if and only if c := a/b = -n-1/2. In this case we also explicitly determine the symmetric eigenvectors and corresponding eigenvalues of T. If T is regular, we explicitly compute the inverse T- 1, the determinant det T, and the symmetric eigenvectors and corresponding eigenvalues of T are described in terms of the roots of the real self-inversive polynomial pn(δ;z):=(zn+1- δzn-δz+1)/(z+1) if n is even, and pn(δ; z):=zn+1-δzn-δz+1 if n is odd, δ:=1+2/(2c+n-1).
URI: http://hdl.handle.net/11420/7882
ISSN: 0024-3795
Journal: 
Institute: Zuverlässiges Rechnen E-19 
Document Type: Article
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

63
Last Week
0
Last month
3
checked on May 29, 2023

SCOPUSTM   
Citations

5
Last Week
0
Last month
0
checked on Jul 11, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.