Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.789

DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gutknecht, Martin | - |
dc.contributor.author | Zemke, Jens-Peter M. | - |
dc.date.accessioned | 2010-05-05T15:28:30Z | de_DE |
dc.date.available | 2010-05-05T15:28:30Z | de_DE |
dc.date.issued | 2010-05 | - |
dc.identifier.other | 625452550 | de_DE |
dc.identifier.uri | http://tubdok.tub.tuhh.de/handle/11420/791 | - |
dc.description.abstract | The Induced Dimension Reduction (IDR) method, which has been introduced as a transpose-free Krylov space method for solving nonsymmetric linear systems, can also be used to determine approximate eigenvalues of a matrix or operator. The IDR residual polynomials are the products of a residual polynomial constructed by successively appending linear smoothing factors and the residual polynomials of a two-sided (block) Lanczos process with one right-hand side and several left-hand sides. The Hessenberg matrix of the OrthoRes version of this Lanczos process is explicitly obtained in terms of the scalars defining IDR by deflating the smoothing factors. The eigenvalues of this Hessenberg matrix are approximations of eigenvalues of the given matrix or operator. | en |
dc.language.iso | en | de_DE |
dc.relation.ispartofseries | Preprints des Institutes für Mathematik;Bericht 145 | - |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | http://doku.b.tu-harburg.de/doku/lic_mit_pod.php | de |
dc.subject | Induzierte Dimensions-Reduktion | de_DE |
dc.subject | Krylov space method | de_DE |
dc.subject | iterative method | de_DE |
dc.subject | induced dimension reduction | de_DE |
dc.subject | large nonsymmetric eigenvalue problem | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | Eigenvalue computations based on IDR | de_DE |
dc.type | Preprint | de_DE |
dc.identifier.urn | urn:nbn:de:gbv:830-tubdok-8755 | de_DE |
dc.identifier.doi | 10.15480/882.789 | - |
dc.type.dini | preprint | - |
dc.subject.gnd | Krylovraumverfahren | de |
dc.subject.gnd | Krylov-Verfahren | de |
dc.subject.gnd | Iteration | de |
dc.subject.gnd | Eigenwert | de |
dc.subject.gnd | Eigenvektor | de |
dc.subject.gnd | Galerkin-Methode | de |
dc.subject.ddccode | 510 | - |
dc.subject.msc | 65F50:Sparse matrices | en |
dc.subject.msc | 65F10:Iterative methods for linear systems | en |
dc.subject.msc | 65F15:Eigenvalues, eigenvectors | en |
dc.subject.msccode | 65F15 | - |
dc.subject.msccode | 65F10 | - |
dc.subject.msccode | 65F50 | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-tubdok-8755 | de_DE |
tuhh.publikation.typ | report | de_DE |
tuhh.opus.id | 875 | de_DE |
tuhh.gvk.ppn | 625452550 | de_DE |
tuhh.oai.show | true | de_DE |
tuhh.pod.url | http://www.epubli.de/oai/tu-hamburg/875?idp=urn:nbn:de:gbv:830-tubdok-8755 | de_DE |
tuhh.pod.allowed | true | de_DE |
dc.identifier.hdl | 11420/791 | - |
tuhh.abstract.english | The Induced Dimension Reduction (IDR) method, which has been introduced as a transpose-free Krylov space method for solving nonsymmetric linear systems, can also be used to determine approximate eigenvalues of a matrix or operator. The IDR residual polynomials are the products of a residual polynomial constructed by successively appending linear smoothing factors and the residual polynomials of a two-sided (block) Lanczos process with one right-hand side and several left-hand sides. The Hessenberg matrix of the OrthoRes version of this Lanczos process is explicitly obtained in terms of the scalars defining IDR by deflating the smoothing factors. The eigenvalues of this Hessenberg matrix are approximations of eigenvalues of the given matrix or operator. | de_DE |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.789 | - |
tuhh.type.opus | Preprint (Vorabdruck) | - |
tuhh.institute.german | Mathematik E-10 | de |
tuhh.institute.english | Mathematics E-10 | en |
tuhh.institute.id | 47 | de_DE |
tuhh.type.id | 20 | de_DE |
tuhh.gvk.hasppn | true | - |
tuhh.series.id | 20 | - |
tuhh.series.name | Preprints des Institutes für Mathematik | - |
dc.type.driver | preprint | - |
dc.identifier.oclc | 930768653 | - |
dc.type.casrai | Other | - |
tuhh.relation.ispartofseries | Preprints des Institutes für Mathematik | de_DE |
tuhh.relation.ispartofseriesnumber | 145 | de_DE |
datacite.resourceType | Other | - |
datacite.resourceTypeGeneral | Text | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_816b | - |
item.creatorGND | Gutknecht, Martin | - |
item.creatorGND | Zemke, Jens-Peter M. | - |
item.openairetype | Preprint | - |
item.tuhhseriesid | Preprints des Institutes für Mathematik | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
item.creatorOrcid | Gutknecht, Martin | - |
item.creatorOrcid | Zemke, Jens-Peter M. | - |
item.languageiso639-1 | en | - |
item.seriesref | Preprints des Institutes für Mathematik;145 | - |
item.mappedtype | Preprint | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0002-0785-9753 | - |
crisitem.author.orcid | 0000-0002-5748-8727 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
IDREig.pdf | 1,82 MB | Adobe PDF | View/Open![]() |
Page view(s)
1,239
Last Week
2
2
Last month
10
10
checked on Aug 17, 2022
Download(s)
336
checked on Aug 17, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.