Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.789
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorGutknecht, Martin-
dc.contributor.authorZemke, Jens-Peter M.-
dc.date.accessioned2010-05-05T15:28:30Zde_DE
dc.date.available2010-05-05T15:28:30Zde_DE
dc.date.issued2010-05-
dc.identifier.other625452550de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/791-
dc.description.abstractThe Induced Dimension Reduction (IDR) method, which has been introduced as a transpose-free Krylov space method for solving nonsymmetric linear systems, can also be used to determine approximate eigenvalues of a matrix or operator. The IDR residual polynomials are the products of a residual polynomial constructed by successively appending linear smoothing factors and the residual polynomials of a two-sided (block) Lanczos process with one right-hand side and several left-hand sides. The Hessenberg matrix of the OrthoRes version of this Lanczos process is explicitly obtained in terms of the scalars defining IDR by deflating the smoothing factors. The eigenvalues of this Hessenberg matrix are approximations of eigenvalues of the given matrix or operator.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 145-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://doku.b.tu-harburg.de/doku/lic_mit_pod.phpde
dc.subjectInduzierte Dimensions-Reduktionde_DE
dc.subjectKrylov space methodde_DE
dc.subjectiterative methodde_DE
dc.subjectinduced dimension reductionde_DE
dc.subjectlarge nonsymmetric eigenvalue problemde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleEigenvalue computations based on IDRde_DE
dc.typePreprintde_DE
dc.identifier.urnurn:nbn:de:gbv:830-tubdok-8755de_DE
dc.identifier.doi10.15480/882.789-
dc.type.dinipreprint-
dc.subject.gndKrylovraumverfahrende
dc.subject.gndKrylov-Verfahrende
dc.subject.gndIterationde
dc.subject.gndEigenwertde
dc.subject.gndEigenvektorde
dc.subject.gndGalerkin-Methodede
dc.subject.ddccode510-
dc.subject.msc65F50:Sparse matricesen
dc.subject.msc65F10:Iterative methods for linear systemsen
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dc.subject.msccode65F10-
dc.subject.msccode65F50-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-tubdok-8755de_DE
tuhh.publikation.typreportde_DE
tuhh.opus.id875de_DE
tuhh.gvk.ppn625452550de_DE
tuhh.oai.showtruede_DE
tuhh.pod.urlhttp://www.epubli.de/oai/tu-hamburg/875?idp=urn:nbn:de:gbv:830-tubdok-8755de_DE
tuhh.pod.allowedtruede_DE
dc.identifier.hdl11420/791-
tuhh.abstract.englishThe Induced Dimension Reduction (IDR) method, which has been introduced as a transpose-free Krylov space method for solving nonsymmetric linear systems, can also be used to determine approximate eigenvalues of a matrix or operator. The IDR residual polynomials are the products of a residual polynomial constructed by successively appending linear smoothing factors and the residual polynomials of a two-sided (block) Lanczos process with one right-hand side and several left-hand sides. The Hessenberg matrix of the OrthoRes version of this Lanczos process is explicitly obtained in terms of the scalars defining IDR by deflating the smoothing factors. The eigenvalues of this Hessenberg matrix are approximations of eigenvalues of the given matrix or operator.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.789-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id20de_DE
tuhh.gvk.hasppntrue-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930768653-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber145de_DE
datacite.resourceTypeOther-
datacite.resourceTypeGeneralText-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.creatorGNDGutknecht, Martin-
item.creatorGNDZemke, Jens-Peter M.-
item.openairetypePreprint-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidGutknecht, Martin-
item.creatorOrcidZemke, Jens-Peter M.-
item.languageiso639-1en-
item.seriesrefPreprints des Institutes für Mathematik;145-
item.mappedtypePreprint-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-0785-9753-
crisitem.author.orcid0000-0002-5748-8727-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
IDREig.pdf1,82 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

1,239
Last Week
2
Last month
10
checked on Aug 17, 2022

Download(s)

336
checked on Aug 17, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.