Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3151
Publisher URL: https://www.epubli.de/shop/buch/Data-Science-in-Maritime-and-City-Logistics-Wolfgang-Kersten-9783753123479/106048
Title: Model transformation framework for scheduling offshore logistics
Language: English
Authors: Rippel, Daniel 
Peng, Shengrui 
Lütjen, Michael 
Sczcerbicka, Helena 
Freitag, Michael 
Editor: Jahn, Carlos 
Kersten, Wolfgang 
Ringle, Christian M.  
Keywords: Logistics;Industry 4.0;Supply Chain Management;Sustainability;City Logistics;Maritime Logistics;Data Science
Issue Date: Sep-2020
Publisher: epubli
Source: Hamburg International Conference of Logistics (HICL) 30: 521-552 (2020)
Part of Series: Proceedings of the Hamburg International Conference of Logistics (HICL) 
Volume number: 30
Abstract (english): 
Purpose: Wind energy is a promising technology to produce sustainable energy. While higher wind speeds at sea result in higher energy production, they also impede the installation of wind farms. Several authors proposed optimization- or simulation-based scheduling models. This article provides a framework to instantiate different models and discusses their advantages and disadvantages using selected models from the literature. Methodology: Building upon previous research, which deducted a common meta-model by analyzing current literature, the framework realizes this model using the OMG’s Essential Meta-Object Facility Standard. Moreover, the framework uses the OMG’s Model To Text Transformation Language for transformations to different models found in the literature and from previous work, to evaluate their behavior given the same base-scenario. Findings: The results show that the proposed framework achieves an instantiation of different model types, i.e., a mathematical optimization, a multi-agent simulation, and a Petri-Nets-based simulation. The discussion highlights the advantages of these types regarding speed, optimality, and flexibility. As the primary advantage, this framework allows investigating the installation on varying levels, focusing on local resources, processes, or the global system. Originality: This research aims to operationalize a common meta-model and model transformations between different model formulations by applying well-established standards to realize a basis for using these models during the planning and schedul-ing of offshore activities. To the authors’ best knowledge, no comparable work on the integration of different modeling techniques in the area of offshore logistics ex-ists.
Conference: Hamburg International Conference of Logistics (HICL) 2020 
URI: http://hdl.handle.net/11420/8057
DOI: 10.15480/882.3151
ISBN: 978-3-753123-47-9
ISSN: 2365-5070
Document Type: Chapter/Article (Proceedings)
License: CC BY-SA 4.0 (Attribution-ShareAlike 4.0) CC BY-SA 4.0 (Attribution-ShareAlike 4.0)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Rippel et al. (2020) - Model Transformation Framework for Scheduling Offshore Logistics.pdfModel Transformation Framework for Scheduling Offshore Logistics1,24 MBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

120
Last Week
4
Last month
20
checked on Apr 23, 2021

Download(s)

63
checked on Apr 23, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons