Please use this identifier to cite or link to this item:
Publisher DOI: 10.1007/s00330-020-07480-7
Title: Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation
Language: English
Authors: Baltruschat, Ivo-Matteo  
Steinmeister, Leonhard A. 
Nickisch, Hannes 
Saalbach, Axel 
Grass, Michael 
Adam, Gerhard 
Knopp, Tobias 
Ittrich, Harald 
Keywords: Artificial intelligence;Radiography;Waiting lists;Workflow
Issue Date: 21-Nov-2020
Publisher: Springer
Source: European Radiology 31 (6): 3837-3845 (2021)
Journal: European radiology 
Abstract (english): 
Objective: The aim is to evaluate whether smart worklist prioritization by artificial intelligence (AI) can optimize the radiology workflow and reduce report turnaround times (RTATs) for critical findings in chest radiographs (CXRs). Furthermore, we investigate a method to counteract the effect of false negative predictions by AI—resulting in an extremely and dangerously long RTAT, as CXRs are sorted to the end of the worklist.

Methods: We developed a simulation framework that models the current workflow at a university hospital by incorporating hospital-specific CXR generation rates and reporting rates and pathology distribution. Using this, we simulated the standard worklist processing “first-in, first-out” (FIFO) and compared it with a worklist prioritization based on urgency. Examination prioritization was performed by the AI, classifying eight different pathological findings ranked in descending order of urgency: pneumothorax, pleural effusion, infiltrate, congestion, atelectasis, cardiomegaly, mass, and foreign object. Furthermore, we introduced an upper limit for the maximum waiting time, after which the highest urgency is assigned to the examination.

Results: The average RTAT for all critical findings was significantly reduced in all prioritization simulations compared to the FIFO simulation (e.g., pneumothorax: 35.6 min vs. 80.1 min; p < 0.0001), while the maximum RTAT for most findings increased at the same time (e.g., pneumothorax: 1293 min vs 890 min; p < 0.0001). Our “upper limit” substantially reduced the maximum RTAT in all classes (e.g., pneumothorax: 979 min vs. 1293 min/1178 min; p < 0.0001).

Conclusion: Our simulations demonstrate that smart worklist prioritization by AI can reduce the average RTAT for critical findings in CXRs while maintaining a small maximum RTAT as FIFO. Key Points: • Development of a realistic clinical workflow simulator based on empirical data from a hospital allowed precise assessment of smart worklist prioritization using artificial intelligence. • Employing a smart worklist prioritization without a threshold for maximum waiting time runs the risk of false negative predictions of the artificial intelligence greatly increasing the report turnaround time. • Use of a state-of-the-art convolution neural network can reduce the average report turnaround time almost to the upper limit of a perfect classification algorithm (e.g., pneumothorax: 35.6 min vs. 30.4 min).
DOI: 10.15480/882.3575
ISSN: 0938-7994
Institute: Biomedizinische Bildgebung E-5 
Document Type: Article
Project: Projekt DEAL 
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Baltruschat2021_Article_SmartChestX-rayWorklistPriorit.pdfVerlags-PDF1,23 MBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Dec 2, 2021


checked on Dec 2, 2021


Last Week
Last month
checked on Nov 26, 2021

Google ScholarTM


Note about this record

Cite this record


This item is licensed under a Creative Commons License Creative Commons