Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3198
Publisher DOI: 10.1051/e3sconf/202019502022
Title: Application of single-board computers in experimental research on unsaturated soils
Language: English
Authors: Milatz, Marius 
Editor: Cardoso, Rafaela 
Jommi, Cristina 
Romero, Enrique 
Issue Date: 16-Oct-2020
Publisher: EDP Sciences
Source: E3S Web of Conferences (195): 02022 (2020-10-16)
Part of Series: E3S Web of Conferences 
Volume number: 195
Abstract (english): 
In this contribution, the application of single-board computers for the investigation of the hydro-mechanical behaviour of unsaturated granular soils is presented. Single-board computers, such as the Raspberry Pi or Arduino, have recently experienced a hype of applications in school and university teaching, in the maker scene, amongst hobbyists, but also in research. In combination with easy to learn and open programming languages, such as Python, individual experimental set-ups for research in unsaturated soil mechanics, using actuators and sensors can be easily developed with the help of different programmable hardware, such as stepper motors, analog-to-digital converters and other controller boards. For the experimental application in imaging of unsaturated granular soils by computed tomography (CT), we present a miniaturized uniaxial compression device for the measurement of unsaturated shear strength and capillary cohesion in CT-experiments. The device has already been applied for CT-imaging of the development of water distribution and capillary bridges in between different shear steps. Furthermore, a new fully programmable hydraulic experimental set-up for the automated investigation of transient hydraulic paths of the water retention curve of granular media is presented. Both devices have been developed in the framework of the Raspberry Pi single-board computer and Python programming language with simple and relatively inexpensive hardware components. In addition to the technical development of the testing devices, experimental results of the hydro-mechanical behaviour of unsaturated sand and glass beads, derived from uniaxial compression tests and water retention tests, will be presented.
Conference: 4th European Conference on Unsaturated Soils, (E-UNSAT 2020) 
URI: http://hdl.handle.net/11420/8257
DOI: 10.15480/882.3198
ISSN: 2555-0403
Institute: Geotechnik und Baubetrieb B-5 
Document Type: Chapter/Article (Proceedings)
Funded by: Deutsche Forschungsgemeinschaft (DFG)
Project: Graduiertenkolleg 2462: Prozesse in natürlichen und technischen Partikel-Fluid-Systemen (PintPFS) 
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
e3sconf_e-unsat2020_02022.pdfVerlags-PDF3,58 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

84
Last Week
10
Last month
checked on Jan 21, 2021

Download(s)

23
checked on Jan 21, 2021

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons