TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Efficient optimization-based design of membrane-assisted distillation processes
 
Options

Efficient optimization-based design of membrane-assisted distillation processes

Publikationstyp
Journal Article
Date Issued
2014-10-08
Sprache
English
Author(s)
Skiborowski, Mirko  orcid-logo
Wessel, Johannes  
Marquardt, Wolfgang  
TORE-URI
http://hdl.handle.net/11420/8271
Journal
Industrial & engineering chemistry research  
Volume
53
Issue
40
Start Page
15698
End Page
15717
Citation
Industrial and Engineering Chemistry Research 40 (53): 15698-15717 (2014-10-08)
Publisher DOI
10.1021/ie502482b
Scopus ID
2-s2.0-84907919607
While simulation-based design has become a standard tool in process engineering, most commercial software lacks appropriate membrane process models. Beside the necessity of available membrane data the major obstacle for process design is the lack of a systematic design approach. The latter is especially true for hybrid processes, which despite their complexity provide high potential for process intensification and can facilitate considerable savings in energy, emissions, and capital investment. Thus, an efficient approach for the design of such hybrid processes is highly desirable. Based on a thorough review of the available methods for the design of membrane-assisted distillation processes, we identify current limitations and present a novel optimization-based method for conceptual process design. The formulation of a superstructure in combination with a model decomposition and a stepwise solution strategy facilitates a robust and efficient optimization-based design, which relies on rigorous thermodynamics and bridges the gap between shortcut calculations and a detailed equipment design. The method is demonstrated for three industrially relevant case studies.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback