TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Discriminating nanoparticle core size using multi-contrast MPI
 
Options

Discriminating nanoparticle core size using multi-contrast MPI

Publikationstyp
Journal Article
Date Issued
2019-03-29
Sprache
English
Author(s)
Shasha, Carolyn  
Teeman, Eric  
Krishnan, Kannan M.  
Szwargulski, Patryk  
Knopp, Tobias  
Möddel, Martin  orcid-logo
Institut
Biomedizinische Bildgebung E-5  
TORE-URI
http://hdl.handle.net/11420/8386
Journal
Physics in medicine and biology  
Volume
64
Issue
7
Article Number
074001
Citation
Physics in Medicine and Biology 7 (64): 074001 (2019-03-29)
Publisher DOI
10.1088/1361-6560/ab0fc9
Scopus ID
2-s2.0-85063960389
PubMed ID
30870817
Magnetic particle imaging (MPI) is an imaging modality that detects the response of a distribution of magnetic nanoparticle tracers to alternating magnetic fields. There has recently been exploration into multi-contrast MPI, in which the signal from different tracer materials or environments is separately reconstructed, resulting in multi-channel images that could enable temperature or viscosity quantification. In this work, we apply a multi-contrast reconstruction technique to discriminate between nanoparticle tracers of different core sizes. Three nanoparticle types with core diameters of 21.9 nm, 25.3 nm and 27.7 nm were each imaged at 21 different locations within the scanner field of view. Multi-channel images were reconstructed for each sample and location, with each channel corresponding to one of the three core sizes. For each image, signal weight vectors were calculated, which were then used to classify each image by core size. With a block averaging length of 10 000, the median signal-to-noise ratio was 40 or higher for all three sample types, and a correct prediction rate of 96.7% was achieved, indicating that core size can effectively be predicted using signal weight vector classification with close to 100% accuracy while retaining high MPI image quality. The discrimination of the core size was reliable even when multiple samples of different core sizes were placed in the measuring field.
Subjects
functional imaging
magnetic nanoparticles
magnetic particle imaging
magnetic particle spectroscopy
multi-contrast magnetic particle imaging
DDC Class
000: Allgemeines, Wissenschaft
Funding(s)
Modellbasierte Parameteridentifikation in Magnetic Particle Imaging  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback