TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Data-driven quasi-LPV model predictive control using koopman operator techniques
 
Options

Data-driven quasi-LPV model predictive control using koopman operator techniques

Citation Link: https://doi.org/10.15480/882.3540
Publikationstyp
Conference Paper
Date Issued
2020
Sprache
English
Author(s)
Cisneros, Pablo S. G.  
Datar, Adwait  
Göttsch, Patrick  orcid-logo
Werner, Herbert  
Institut
Regelungstechnik E-14  
TORE-DOI
10.15480/882.3540
TORE-URI
http://hdl.handle.net/11420/8429
Journal
IFAC-PapersOnLine  
Volume
53
Issue
2
Start Page
6062
End Page
6068
Citation
IFAC World Congress 53 (2): 6062-6068 (2020)
Contribution to Conference
21st IFAC World Congress 2020  
Publisher DOI
10.1016/j.ifacol.2020.12.1676
Scopus ID
2-s2.0-85105051698
Publisher
Elsevier
A fast data-driven extension of the velocity-based quasi-linear parameter-varying model predictive control (qLMPC) approach is proposed for scenarios where first principles models are not available or are computationally too expensive. We use tools from the recently proposed Koopman operator framework to identify a quasi-linear parameter-varying model (in input/output and state-space form) by choosing the observables from physical insight. An online update strategy to adapt to changes in the plant dynamics is also proposed. The approach is validated experimentally on a strongly nonlinear 3-degree-of-freedom Control Moment Gyroscope, showing remarkable tracking performance.
Subjects
Nonlinear predictive control
Linear parameter-varying systems
Data-driven control
Koopman operator
Adaptive control
DDC Class
600: Technik
620: Ingenieurwissenschaften
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S2405896320322795-main.pdf

Size

754.64 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback