Publisher DOI: 10.1007/s11155-006-9007-4
Title: Towards optimal use of multi-precision arithmetic : a remark
Language: English
Authors: Kreinovich, Vladik 
Rump, Siegfried M.  
Issue Date: 29-Aug-2006
Publisher: Springer Science + Business Media B.V.
Source: Reliable Computing 12 (5): 365-369 (2006)
Journal or Series Name: Reliable Computing 
Abstract (english): 
If standard-precision computations do not lead to the desired accuracy, then it is reasonable to increase precision until we reach this accuracy. What is the optimal way of increasing precision? One possibility is to choose a constant q > 1, so that if the precision which requires the time t did not lead to a success, we select the next precision that requires time q ̇ ṫ It was shown that among such strategies, the optimal (worst-case) overhead is attained when q = 2. In this paper, we show that this "time-doubling" strategy is optimal among all possible strategies, not only among the ones in which we always increase time by a constant q > 1. © Springer 2006.
ISSN: 1573-1340
Institute: Zuverlässiges Rechnen E-19 
Document Type: Article
More Funding information: NASA
Army Research Lab
University of Texas System
Texas Department of Transportation
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

checked on Mar 7, 2021

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.