TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Data‐driven multiscale modeling of self‐assembly and hierarchical structural formation in biological macromolecular systems
 
Options

Data‐driven multiscale modeling of self‐assembly and hierarchical structural formation in biological macromolecular systems

Publikationstyp
Conference Poster not in Proceedings
Date Issued
2020
Sprache
English
Author(s)
Depta, Philipp Nicolas 
Jandt, Uwe  
Jacobi, Cornelius 
Dosta, Maksym  
Zeng, An-Ping  orcid-logo
Heinrich, Stefan  
Institut
Bioprozess- und Biosystemtechnik V-1  
Mehrskalensimulation von Feststoffsystemen V-EXK1  
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
TORE-URI
http://hdl.handle.net/11420/8927
Journal
Chemie - Ingenieur - Technik  
Start Page
1249
End Page
1249
Citation
Chemie Ingenieur Technik 92 (9): 1249-1249 (2020)
Publisher DOI
10.1002/cite.202055390
Macromolecular systems are present inmany applications of biotechnology andprocess engineering and the physical phenomena involved therein often spreadover vast scales of size and time. To gaininsight, generally applicable models are developed to transfer the essential dynamics (including directional dependency)[1] and complex interaction of biologicalmacromolecules from MD [2] to DEM ina modeling methodology termed by usthe ‘‘molecular discrete element method’’(MDEM). The models are parameterized bottom-up and validated top-down bycomparison with experimental data, whichis obtained from BLI and DLS. As a modelsystem the multi-enzyme pyruvate dehy-drogenase complex (PDC) is used, whichfeatures organized self-structuring pro-cesses and a highly regulated multi-enzymatic machinery dependent upon thestructure.Obtained results for the PDC compo-nent E2 show that the continuous formation and breakup of enzymatic agglomerates can be predicted using the developedMDEM methodology. This approach requires no experimental data fitting andproduces accurate scale-bridging kineticsas well as agglomerate sizes matching corresponding dynamic light scattering data.
DDC Class
620: Ingenieurwissenschaften
Funding(s)
Teilprojekt von SPP 1934: Multiskalige modellgestützte Untersuchungen funktionaler Enzym- und Proteinagglomerate für biotechnologische Anwendung - Teil 2: Von der Struktur zur Funktion  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback