TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Research Data
  4. A dataset combining microcompression and nanoindentation data from finite element simulations of nanoporous metals
 
Options

A dataset combining microcompression and nanoindentation data from finite element simulations of nanoporous metals

Citation Link: https://doi.org/10.15480/336.3411
Type
Dataset
Date Issued
2021-04-02
Author(s)
Huber, Norbert  orcid-logo
Data Collector
Institute of Materials Mechanics, Helmholtz-Zentrum Hereon  
Language
English
Institute
Werkstoffphysik und -technologie M-22  
DOI
10.15480/336.3411
TORE-URI
http://hdl.handle.net/11420/9195
Is Supplement To
10.3390/ma14081822
Abstract
Nanoporous metals with their complex microstructure represent an ideal candidate for method developments that combine physics, data and machine learning. They allow to tune the solid fraction, ligament size and connectivity density within a large range. These microstructural parameters have a large impact on the macroscopic mechanical properties. This makes this class of materials an ideal science case for the development of strategies for dimensionality reduction, supporting the analysis and visualization of the underlying structure-property relationships. Efficient finite element beam modeling techniques are used to generate ~200 data sets for macroscopic compression and nanoindentation of open pore nanofoams. A data base is provided that uses consistent settings of structural and mechanical properties on the microscale for which the elastic-plastic macroscopic compression behavior and the hardness is predicted. Ligament geometries of two different initial solid fractions are chosen, for which the structural randomization, the connectivity density, the yield stress and the work hardening rate are randomly varied in large ranges. This data base allows deriving the microstructure-properties relationships of nanoporous metals by means of dimensionality reduction, data mining and machine learning.
Subjects
nanoporous metals, finite element simulation, nanoindentation, dimensionality reduction, data mining, machine learning
DDC Class
530: Physik
620: Ingenieurwissenschaften
Funding(s)
SFB 986: Teilprojekt B4 - Mikromechanisches Materialverhalten hierarchischer Werkstoffe  
License
https://creativecommons.org/licenses/by/4.0/
No Thumbnail Available
Name

PCA-results.zip

Size

77.82 KB

Format

ZIP

No Thumbnail Available
Name

PCA-Images.zip

Size

1.05 MB

Format

ZIP

No Thumbnail Available
Name

PCA-Python.zip

Size

2.33 KB

Format

ZIP

No Thumbnail Available
Name

SimulationData.zip

Size

11.36 KB

Format

ZIP

Loading...
Thumbnail Image
Name

Description_of_Data.pdf

Size

797.94 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback