Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3436
Fulltext available Open Access
Title: Optimisation of rainfall-runoff modelling for urban flood management with ensemble radar nowcasts
Language: English
Authors: Hellmers, Sandra  
Strehz, Alexander 
Leese, Nina Sophie 
Einfalt, Thomas 
Fröhle, Peter 
Keywords: Ensembles;Radar Data;Rainfall Runoff Modelling;Urban Flood Management
Issue Date: 2016
Abstract (english): 
Especially in urban areas, improved strategies are required to assess the influence of small scale precipitation patterns of local heavy rainfall events in a flood warning context. The results of the case study show a wide range of possible precipitation scenarios given by the radar nowcast ensemble members for a local rainfall event. This reflects the large uncertainty in predicting discharge curves. The first steps of the project StucK (2015 till 2018) are presented here: (1) developing a methodology to compute ensemble nowcasts of local heavy rainfall events, (2) integration of small scale radar rainfall nowcasts in a Rainfall-Runoff Model and (3) first approach with percentiles to optimize the Flood Warning Service Hamburg. Within the project different statistical approaches will be analysed to improve the online forecast system.
Conference: Novatech 2016, 9th International Conference on Planning and Technologies for Sustainable Urban Water Management 
URI: http://hdl.handle.net/11420/9293
DOI: 10.15480/882.3436
Institute: Wasserbau B-10 
Document Type: Research Paper
Project: ReWaM - Verbundprojekt StucK: Sicherstellung der Entwässerung küstennaher urbaner Räume unter Berücksichtigung des Klimawandels, Teilprojekt 3 
Funded by: Bundesministerium für Bildung und Forschung 
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Hellmers, Strehz et al. - Ensemble Radar Nowcasts and Rainfall.pdfPoster350,46 kBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

42
Last Week
2
Last month
4
checked on Dec 2, 2021

Download(s)

30
checked on Dec 2, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.