TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Damage tolerance of few-layer graphene modified CFRP: From thin-to thick-ply laminates
 
Options

Damage tolerance of few-layer graphene modified CFRP: From thin-to thick-ply laminates

Publikationstyp
Journal Article
Date Issued
2021-06-16
Sprache
English
Author(s)
Körbelin, Johann  
Kötter, Benedikt  orcid-logo
Voormann, Hauke  orcid-logo
Brandenburg, Lukas  
Selz, Stefan  
Fiedler, Bodo  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-URI
http://hdl.handle.net/11420/9340
Journal
Composites science and technology  
Volume
209
Article Number
108765
Citation
Composites Science and Technology 209: 108765 (2021-06-16)
Publisher DOI
10.1016/j.compscitech.2021.108765
Scopus ID
2-s2.0-85104073178
Low impact resistance and high notch sensitivity are significant drawbacks of carbon-fibre-reinforced plastics (CFRP). The addition of carbon nanoparticles (CNP), a third phase, reduces this deficit through additional energy-consuming mechanisms. The influence of CNP modification on strength and damage behaviour cannot be separated from the effect of layer thickness because it controls the stress state in the entire laminate. This study investigates the influence of few-layer graphene (FLG) modification on CFRP with layer thicknesses varying from ultra-thin-ply (28μm, 30g/m ) to thick-ply (220μm, 240g/m ). The mode I and mode II inter-laminar energy release rates increased significantly with the FLG modification. It also increased the damage initiation stress for notched laminates of all layer thicknesses, thereby increasing the useable design space. The FLG modification also increased the ultimate notched strength for the ultra-thin ply laminates, thereby reducing the high notch sensitivity which is the limiting factor for their application. In the case of low-velocity impact damage, the modification of thick-layer laminates improves the residual compressive strength. FLG modification leads to a considerable improvement in the compressive strength. The selection of CNP was based on a comprehensive investigation of the fracture toughness of the prepreg resin/CNP nanocomposites. The particle loading and type was selected for FLG with a 25μm sheet size and 0.05 wt %.
Subjects
Delamination
Fracture toughness
Impact behaviour
Nanoparticles
Notch sensitivity
Funding(s)
Schadenstolerante dünnschichtige (Thin-Ply) Kohlenstofffaser-Kunststoff-Verbunde mit Graphen-verstärktem Matrixsystem  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback