TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Direct and broadband plasmonic charge transfer to enhance water oxidation on a gold electrode
 
Options

Direct and broadband plasmonic charge transfer to enhance water oxidation on a gold electrode

Citation Link: https://doi.org/10.15480/882.3462
Publikationstyp
Journal Article
Date Issued
2021-02-23
Sprache
English
Author(s)
Graf, Matthias  
Vonbun-Feldbauer, Gregor  orcid-logo
Koper, Marc T. M.  
Institut
Keramische Hochleistungswerkstoffe M-9  
TORE-DOI
10.15480/882.3462
TORE-URI
http://hdl.handle.net/11420/9342
Journal
ACS nano  
Volume
15
Issue
2
Start Page
3188
End Page
3200
Citation
ACS Nano 15 (2): 3188-3200 (2021-02-23)
Publisher DOI
10.1021/acsnano.0c09776
Scopus ID
2-s2.0-85100661093
PubMed ID
33496564
Publisher
American Chemical Society
Plasmonic photocatalysis via hot charge carriers suffers from their short lifetime compared with the sluggish kinetics of most reactions. To increase lifetime, adsorbates on the surface of a plasmonic metal may create preferential states for electrons to be excited from. We demonstrate this effect with O adsorbates on a nanoporous gold electrode. Nanoporous gold is used to obtain a broadband optical response, to increase the obtained photocurrent, and to provide a SERS-active substrate. Only with adsorbates present, we observe significant photocurrents. Illumination also increases the adsorbate coverage above its dark potential-dependent equilibrium, as derived from a two-laser in situ SERS approach. Density functional theory calculations confirm the appearance of excitable states below the Fermi level. The photocurrent enhancement and broadband characteristics reveal the potential of the plasmonic approach to improve the efficiency of photoelectrochemical water splitting.
Subjects
Chemical interface damping
Density functional theory
Hot electron
Hot hole
Nanoporous gold
Photoelectrocatalysis
Surface-enhanced Raman spectroscopy
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding(s)
SFB 986: Teilprojekt A4 - Ab-initio basierende Modellierung und Beeinflussung der mechanischen Eigenschaften von Hybridgrenzflächen  
SFB 986: Teilprojekt B10 - Funktionalisierung von hierarchischen nanoporösen Metallen durch aktive organische Filme  
SFB 986: Teilprojekt C9 - Lochemission aus anpassbaren metallischen Metamaterialien  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

acsnano.0c09776.pdf

Size

3.5 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback