TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Influence of alumina addition on the optical properties and the thermal stability of titania thin films and inverse opals produced by atomic layer deposition
 
Options

Influence of alumina addition on the optical properties and the thermal stability of titania thin films and inverse opals produced by atomic layer deposition

Citation Link: https://doi.org/10.15480/882.3467
Publikationstyp
Journal Article
Date Issued
2021-04
Sprache
English
Author(s)
Waleczek, Martin  
Dendooven, Jolien  
Dyachenko, Pavel N.  
Petrov, Alexander  orcid-logo
Eich, Manfred  
Blick, Robert H.  
Detavernier, Christophe  
Nielsch, Kornelius  
Furlan, Kaline P.  orcid-logo
Zierold, Robert  
Institut
Optische und Elektronische Materialien E-12  
Keramische Hochleistungswerkstoffe M-9  
Integrated Ceramic-based Materials Systems M-EXK3  
TORE-DOI
10.15480/882.3467
TORE-URI
http://hdl.handle.net/11420/9368
Journal
Nanomaterials  
Volume
11
Issue
4
Article Number
1053
Citation
Nanomaterials 11 (4): 1053 (2021-04)
Publisher DOI
10.3390/nano11041053
Scopus ID
2-s2.0-85104409342
Publisher
Multidisciplinary Digital Publishing Institute
TiO2 thin films deposited by atomic layer deposition (ALD) at low temperatures (lower than 100 °C) are, in general, amorphous and exhibit a smaller refractive index in comparison to their crystalline counterparts. Nonetheless, low-temperature ALD is needed when the substrates or templates are based on polymeric materials, as the deposition has to be performed below their glass transition or melting temperatures. This is the case for photonic crystals generated via ALD infiltration of self-assembled polystyrene templates. When heated up, crystal phase transformations take place in the thin films or photonic structures, and the accompanying volume reduction as well as the burn-out of residual impurities can lead to mechanical instability. The introduction of cation doping (e.g., Al or Nb) in bulk TiO2 parts is known to alter phase transitions and to stabilize crystalline phases. In this work, we have developed low-temperature ALD super-cycles to introduce Al2O3 into TiO2 thin films and photonic crystals. The aluminum oxide content was adjusted by varying the TiO2:Al2O3 internal loop ratio within the ALD super-cycle. Both thin films and inverse opal photonic crystal structures were subjected to thermal treatments ranging from 200 to 1200 °C and were characterized by in- and ex-situ X-ray diffraction, spectroscopic ellipsometry, and spectroscopic reflectance measurements. The results show that the introduction of alumina affects the crystallization and phase transition temperatures of titania as well as the optical properties of the inverse opal photonic crystals (iPhC). The thermal stability of the titania iPhCs was increased by the alumina introduction, maintaining their photonic bandgap even after heat treatment at 900 °C and outperforming the pure titania, with the best results being achieved with the super-cycles corresponding to an estimated alumina content of 26 wt.%.
Subjects
atomic layer deposition
optical properties
inverse opal photonic crystals
bio-inspired materials
ceramic
high-temperature stability nanomaterials
DDC Class
530: Physik
540: Chemie
600: Technik
620: Ingenieurwissenschaften
Funding(s)
SFB 986: Teilprojekt C4 - Deposition, Ordnung und mechanische Stabilität von Beschichtungen aus assemblierten Partikeln mit enger Größenverteilung  
SFB 986: Teilprojekt C2 - Keramikbasierte hochtemperaturstabile Wärmestrahlungsreflektoren und Strukturfarben  
SFB 986: Teilprojekt C01 - Multiskalige photonische Materialien mit anpassbarer Absorption und thermischer Emission  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

nanomaterials-11-01053.pdf

Size

4.33 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback