Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3467
Publisher DOI: 10.3390/nano11041053
Title: Influence of alumina addition on the optical properties and the thermal stability of titania thin films and inverse opals produced by atomic layer deposition
Language: English
Authors: Waleczek, Martin 
Dendooven, Jolien 
Dyachenko, Pavel N. 
Petrov, Alexander  
Eich, Manfred 
Blick, Robert H. 
Detavernier, Christophe 
Nielsch, Kornelius 
Furlan, Kaline P. 
Zierold, Robert 
Keywords: atomic layer deposition;optical properties;inverse opal photonic crystals;bio-inspired materials;ceramic;high-temperature stability nanomaterials
Issue Date: 20-Apr-2021
Publisher: Multidisciplinary Digital Publishing Institute
Source: Nanomaterials 11 (4): 1053 (2021)
Journal or Series Name: Nanomaterials 
Abstract (english): 
TiO2 thin films deposited by atomic layer deposition (ALD) at low temperatures (lower than 100 °C) are, in general, amorphous and exhibit a smaller refractive index in comparison to their crystalline counterparts. Nonetheless, low-temperature ALD is needed when the substrates or templates are based on polymeric materials, as the deposition has to be performed below their glass transition or melting temperatures. This is the case for photonic crystals generated via ALD infiltration of self-assembled polystyrene templates. When heated up, crystal phase transformations take place in the thin films or photonic structures, and the accompanying volume reduction as well as the burn-out of residual impurities can lead to mechanical instability. The introduction of cation doping (e.g., Al or Nb) in bulk TiO2 parts is known to alter phase transitions and to stabilize crystalline phases. In this work, we have developed low-temperature ALD super-cycles to introduce Al2O3 into TiO2 thin films and photonic crystals. The aluminum oxide content was adjusted by varying the TiO2:Al2O3 internal loop ratio within the ALD super-cycle. Both thin films and inverse opal photonic crystal structures were subjected to thermal treatments ranging from 200 to 1200 °C and were characterized by in- and ex-situ X-ray diffraction, spectroscopic ellipsometry, and spectroscopic reflectance measurements. The results show that the introduction of alumina affects the crystallization and phase transition temperatures of titania as well as the optical properties of the inverse opal photonic crystals (iPhC). The thermal stability of the titania iPhCs was increased by the alumina introduction, maintaining their photonic bandgap even after heat treatment at 900 °C and outperforming the pure titania, with the best results being achieved with the super-cycles corresponding to an estimated alumina content of 26 wt.%.
URI: http://hdl.handle.net/11420/9368
DOI: 10.15480/882.3467
ISSN: 2079-4991
Institute: Optische und Elektronische Materialien E-12 
Keramische Hochleistungswerkstoffe M-9 
Document Type: Article
Funded by: Deutsche Forschungsgemeinschaft (DFG) 
Project: SFB 986: Teilprojekt C4 - Deposition, Ordnung und mechanische Stabilität von Beschichtungen aus assemblierten Partikeln mit enger Größenverteilung 
SFB 986: Teilprojekt C2 - Keramikbasierte hochtemperaturstabile Wärmestrahlungsreflektoren und Strukturfarben 
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
nanomaterials-11-01053.pdf4,43 MBAdobe PDFView/Open
Thumbnail
Show full item record

Page view(s)

55
checked on May 6, 2021

Download(s)

20
checked on May 6, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons