TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Exploring key ionic interactions for magnesium degradation in simulated body fluid – a data-driven approach
 
Options

Exploring key ionic interactions for magnesium degradation in simulated body fluid – a data-driven approach

Citation Link: https://doi.org/10.15480/882.3486
Publikationstyp
Journal Article
Date Issued
2021-01-22
Sprache
English
Author(s)
Zeller-Plumhoff, Berit  
Gile, Melissa  
Priebe, Melissa  
Slominska, Hanna  
Boll, Benjamin  orcid-logo
Wiese, Björn  
Würger, Tim  orcid-logo
Willumeit-Römer, Regine  
Meißner, Robert  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-DOI
10.15480/882.3486
TORE-URI
http://hdl.handle.net/11420/9390
Journal
Corrosion science  
Volume
182
Article Number
109272
Citation
Corrosion Science 182: 109272 (2021-04-15)
Publisher DOI
10.1016/j.corsci.2021.109272
Scopus ID
2-s2.0-85100384011
Publisher
Elsevier Science
Peer Reviewed
true
References
10.15480/336.2862
We have studied the degradation of pure magnesium wire in simulated body fluid and its subsets under physiological conditions to enable the prediction of the degradation rate based on the medium's ionic composition. To this end, micro-computed tomography and scanning electron microscopy with energy-dispersive X-ray spectroscopy were used, followed by a tree regression analysis. A non-linear relationship was found between degradation rate and the precipitation of calcium salts. The mean absolute error for predicting the degradation rate was 1.35 mm/yr. This comparatively high value indicates that ionic interactions were exceedingly complex or that an unknown parameter determining the degradation may exist.
Subjects
Magnesium degradation
MicroCT
Simulated body fluid
Tree regression
MLE@TUHH
DDC Class
600: Technik
Funding(s)
I³-Lab - Strukturelle Integrität durch Vibroakustische Modulation zur Verlängerung der Lebensdauer ziviler Infrastruktur  
Promoting patient safety by a novel combination of imaging technologies for biodegradable magnesium implants  
More Funding Information
This research was supported in part through the Maxwell computational resources operated at Deutsches Elektronen-Synchrotron DESY , Hamburg, Germany.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S0010938X2100038X-main.pdf

Size

8.38 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback