Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3499
DC FieldValueLanguage
dc.contributor.authorGiuntini, Diletta-
dc.contributor.authorDavydok, Anton-
dc.contributor.authorBlankenburg, Malte-
dc.contributor.authorDomènech Garcia, Berta-
dc.contributor.authorBor, Büsra-
dc.contributor.authorLi, Mingjing-
dc.contributor.authorScheider, Ingo-
dc.contributor.authorKrywka, Christina-
dc.contributor.authorMüller, Martin-
dc.contributor.authorSchneider, Gerold A.-
dc.date.accessioned2021-04-30T11:03:19Z-
dc.date.available2021-04-30T11:03:19Z-
dc.date.issued2021-03-22-
dc.identifier.citationNano letters 21 (7): 2891-2897 (2021-04-14)de_DE
dc.identifier.issn1530-6984de_DE
dc.identifier.urihttp://hdl.handle.net/11420/9400-
dc.description.abstractWith the ever-expanding functional applications of supercrystalline nanocomposites (a relatively new category of materials consisting of organically functionalized nanoparticles arranged into periodic structures), it becomes necessary to ensure their structural stability and understand their deformation and failure mechanisms. Inducing the cross-linking of the functionalizing organic ligands, for instance, leads to a remarkable enhancement of the nanocomposites' mechanical properties. It is however still unknown how the cross-linked organic phase redistributes applied loads, how the supercrystalline lattice accommodates the imposed deformations, and thus in general what phenomena govern the overall material's mechanical response. This work elucidates these aspects for cross-linked supercrystalline nanocomposites through an in situ small- and wide-angle X-ray scattering study combined with uniaxial pressing. Because of this loading condition, it emerges that the cross-linked ligands effectively carry and distribute loads homogeneously throughout the nanocomposites, while the superlattice deforms via rotation, slip, and local defects generation.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)de_DE
dc.description.sponsorshipAlexander von Humboldt-Stiftungde_DE
dc.language.isoende_DE
dc.publisherACS Publ.de_DE
dc.relation.ispartofNano lettersde_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.subjectCross-Linkingde_DE
dc.subjectMechanical Behaviorde_DE
dc.subjectNanocompositesde_DE
dc.subjectNanocrystal Superlatticede_DE
dc.subjectSupercrystalsde_DE
dc.subjectX-ray Scatteringde_DE
dc.subject.ddc600: Technikde_DE
dc.titleDeformation behavior of cross-linked supercrystalline nanocomposites: an in situ SAXS/WAXS study during uniaxial compressionde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3499-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0133394-
tuhh.oai.showtruede_DE
tuhh.abstract.englishWith the ever-expanding functional applications of supercrystalline nanocomposites (a relatively new category of materials consisting of organically functionalized nanoparticles arranged into periodic structures), it becomes necessary to ensure their structural stability and understand their deformation and failure mechanisms. Inducing the cross-linking of the functionalizing organic ligands, for instance, leads to a remarkable enhancement of the nanocomposites' mechanical properties. It is however still unknown how the cross-linked organic phase redistributes applied loads, how the supercrystalline lattice accommodates the imposed deformations, and thus in general what phenomena govern the overall material's mechanical response. This work elucidates these aspects for cross-linked supercrystalline nanocomposites through an in situ small- and wide-angle X-ray scattering study combined with uniaxial pressing. Because of this loading condition, it emerges that the cross-linked ligands effectively carry and distribute loads homogeneously throughout the nanocomposites, while the superlattice deforms via rotation, slip, and local defects generation.de_DE
tuhh.publisher.doi10.1021/acs.nanolett.0c05041-
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.3499-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue7de_DE
tuhh.container.volume21de_DE
tuhh.container.startpage2891de_DE
tuhh.container.endpage2897de_DE
dc.relation.projectSFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3de_DE
dc.identifier.pmid33749275de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85104275677de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoD.G. gratefully acknowledges the support from the Alexander von Humboldt Foundation. B.B. gratefully acknowledges the support from the Ministry of National Education of the Republic of Turkey.de_DE
item.grantfulltextopen-
item.openairetypeArticle-
item.creatorOrcidGiuntini, Diletta-
item.creatorOrcidDavydok, Anton-
item.creatorOrcidBlankenburg, Malte-
item.creatorOrcidDomènech Garcia, Berta-
item.creatorOrcidBor, Büsra-
item.creatorOrcidLi, Mingjing-
item.creatorOrcidScheider, Ingo-
item.creatorOrcidKrywka, Christina-
item.creatorOrcidMüller, Martin-
item.creatorOrcidSchneider, Gerold A.-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.mappedtypeArticle-
item.languageiso639-1en-
item.creatorGNDGiuntini, Diletta-
item.creatorGNDDavydok, Anton-
item.creatorGNDBlankenburg, Malte-
item.creatorGNDDomènech Garcia, Berta-
item.creatorGNDBor, Büsra-
item.creatorGNDLi, Mingjing-
item.creatorGNDScheider, Ingo-
item.creatorGNDKrywka, Christina-
item.creatorGNDMüller, Martin-
item.creatorGNDSchneider, Gerold A.-
crisitem.funder.funderid501100001659-
crisitem.funder.funderrorid018mejw64-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.orcid0000-0003-3338-6432-
crisitem.author.orcid0000-0003-2042-4428-
crisitem.author.orcid0000-0001-5250-9624-
crisitem.author.orcid0000-0002-5290-8104-
crisitem.author.orcid0000-0003-0995-7602-
crisitem.author.orcid0000-0001-5780-6249-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
acs.nanolett.0c05041.pdfVerlags-PDF5,4 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

44
checked on May 6, 2021

Download(s)

11
checked on May 6, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons