Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3508
DC FieldValueLanguage
dc.contributor.authorKonuk Onat, Mine-
dc.contributor.authorSellschopp, Kai-
dc.contributor.authorVonbun-Feldbauer, Gregor-
dc.contributor.authorMeißner, Robert-
dc.date.accessioned2021-05-04T10:56:26Z-
dc.date.available2021-05-04T10:56:26Z-
dc.date.issued2021-02-17-
dc.identifier.citationJournal of Physical Chemistry C 125 (8): 4794-4805 (2021-03-04)de_DE
dc.identifier.issn1932-7455de_DE
dc.identifier.urihttp://hdl.handle.net/11420/9427-
dc.description.abstractMagnetite shows enormous potential from biocompatible hybrid materials to heterogeneous catalysis. However, a detailed atomistic understanding of magnetite in complex nanostructures and at interfaces is required to unfold these potentials. Methods capable of treating (several) thousands of atoms and achieving an optimal balance between accuracy and efficiency are therefore in great demand. Here, a new empirical force field for the (001) and (111) magnetite surfaces is developed using partial point charges derived from ab initio Bader charge analyses. An accurate description of electrostatic interactions enables the modeling of magnetite-organic and magnetite-water interfaces. Consequently, surface charge redistribution is proposed as the most relevant mechanism for the surface reconstruction of magnetite and the bidentate binding of ligands. The produced force field results are in excellent agreement with the latest findings on magnetite. The approach can be further applied to magnetite nanoparticles and easily extended to oxide and other ionic crystal surfaces.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)de_DE
dc.language.isoende_DE
dc.publisherSoc.de_DE
dc.relation.ispartofThe journal of physical chemistry Cde_DE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.subject.ddc600: Technikde_DE
dc.titleModeling charge redistribution at magnetite interfaces in empirical force fieldsde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3508-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0133699-
tuhh.oai.showtruede_DE
tuhh.abstract.englishMagnetite shows enormous potential from biocompatible hybrid materials to heterogeneous catalysis. However, a detailed atomistic understanding of magnetite in complex nanostructures and at interfaces is required to unfold these potentials. Methods capable of treating (several) thousands of atoms and achieving an optimal balance between accuracy and efficiency are therefore in great demand. Here, a new empirical force field for the (001) and (111) magnetite surfaces is developed using partial point charges derived from ab initio Bader charge analyses. An accurate description of electrostatic interactions enables the modeling of magnetite-organic and magnetite-water interfaces. Consequently, surface charge redistribution is proposed as the most relevant mechanism for the surface reconstruction of magnetite and the bidentate binding of ligands. The produced force field results are in excellent agreement with the latest findings on magnetite. The approach can be further applied to magnetite nanoparticles and easily extended to oxide and other ionic crystal surfaces.de_DE
tuhh.publisher.doi10.1021/acs.jpcc.0c10338-
tuhh.publication.instituteKunststoffe und Verbundwerkstoffe M-11de_DE
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.3508-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue8de_DE
tuhh.container.volume125de_DE
tuhh.container.startpage4794de_DE
tuhh.container.endpage4805de_DE
dc.relation.projectSFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85101824837de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoThe project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Projektnummer 192346071-SFB 986, and-Projektnummer 390794421-GRK 2462.de_DE
item.grantfulltextopen-
item.openairetypeArticle-
item.creatorOrcidKonuk Onat, Mine-
item.creatorOrcidSellschopp, Kai-
item.creatorOrcidVonbun-Feldbauer, Gregor-
item.creatorOrcidMeißner, Robert-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.mappedtypeArticle-
item.languageiso639-1en-
item.creatorGNDKonuk Onat, Mine-
item.creatorGNDSellschopp, Kai-
item.creatorGNDVonbun-Feldbauer, Gregor-
item.creatorGNDMeißner, Robert-
crisitem.funder.funderid501100001659-
crisitem.funder.funderrorid018mejw64-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.author.deptMolekulardynamische Simulation weicher Materie M-EXK2-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptMolekulardynamische Simulation weicher Materie M-EXK2-
crisitem.author.orcid0000-0001-6321-6501-
crisitem.author.orcid0000-0002-0003-2075-
crisitem.author.orcid0000-0002-9327-0450-
crisitem.author.orcid0000-0003-1926-114X-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
acs.jpcc.0c10338.pdfVerlags-PDF3,5 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

26
checked on May 6, 2021

Download(s)

6
checked on May 6, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons