TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Modeling charge redistribution at magnetite interfaces in empirical force fields
 
Options

Modeling charge redistribution at magnetite interfaces in empirical force fields

Citation Link: https://doi.org/10.15480/882.3508
Publikationstyp
Journal Article
Date Issued
2021-02-17
Sprache
English
Author(s)
Konuk Onat, Mine 
Sellschopp, Kai  orcid-logo
Vonbun-Feldbauer, Gregor  orcid-logo
Meißner, Robert  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
Keramische Hochleistungswerkstoffe M-9  
TORE-DOI
10.15480/882.3508
TORE-URI
http://hdl.handle.net/11420/9427
Journal
The journal of physical chemistry C  
Volume
125
Issue
8
Start Page
4794
End Page
4805
Citation
Journal of Physical Chemistry C 125 (8): 4794-4805 (2021-03-04)
Publisher DOI
10.1021/acs.jpcc.0c10338
Scopus ID
2-s2.0-85101824837
Publisher
Soc.
Magnetite shows enormous potential from biocompatible hybrid materials to heterogeneous catalysis. However, a detailed atomistic understanding of magnetite in complex nanostructures and at interfaces is required to unfold these potentials. Methods capable of treating (several) thousands of atoms and achieving an optimal balance between accuracy and efficiency are therefore in great demand. Here, a new empirical force field for the (001) and (111) magnetite surfaces is developed using partial point charges derived from ab initio Bader charge analyses. An accurate description of electrostatic interactions enables the modeling of magnetite-organic and magnetite-water interfaces. Consequently, surface charge redistribution is proposed as the most relevant mechanism for the surface reconstruction of magnetite and the bidentate binding of ligands. The produced force field results are in excellent agreement with the latest findings on magnetite. The approach can be further applied to magnetite nanoparticles and easily extended to oxide and other ionic crystal surfaces.
DDC Class
600: Technik
Funding(s)
SFB 986: Teilprojekt A4 - Ab-initio basierende Modellierung und Beeinflussung der mechanischen Eigenschaften von Hybridgrenzflächen  
SFB 986: Teilprojekt A8 - Molekulardynamische Simulation der Selbstassemblierung von polymerbeschichteten keramischen Nanopartikeln  
Graduiertenkolleg 2462: Prozesse in natürlichen und technischen Partikel-Fluid-Systemen (PintPFS)  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

acs.jpcc.0c10338.pdf

Size

3.42 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback