TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Exploring structure-property relationships in magnesium dissolution modulators
 
Options

Exploring structure-property relationships in magnesium dissolution modulators

Citation Link: https://doi.org/10.15480/882.3579
Publikationstyp
Journal Article
Date Issued
2021-01-08
Sprache
English
Author(s)
Würger, Tim  orcid-logo
Mei, Di  
Vaghefinazari, Bahram  
Winkler, David A.  
Lamaka, Sviatlana V.  
Zheludkevich, Mikhail L.  
Meißner, Robert  orcid-logo
Feiler, Christian  
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-DOI
10.15480/882.3579
TORE-URI
http://hdl.handle.net/11420/9657
Journal
npj Materials degradation  
Volume
5
Issue
1
Article Number
2
Citation
npj Materials Degradation 5 (1): 2 (2021-12-01)
Publisher DOI
10.1038/s41529-020-00148-z
Scopus ID
2-s2.0-85105881853
Publisher
Macmillan Publishers Limited, part of Springer Nature
Small organic molecules that modulate the degradation behavior of Mg constitute benign and useful materials to modify the service environment of light metal materials for specific applications. The vast chemical space of potentially effective compounds can be explored by machine learning-based quantitative structure-property relationship models, accelerating the discovery of potent dissolution modulators. Here, we demonstrate how unsupervised clustering of a large number of potential Mg dissolution modulators by structural similarities and sketch-maps can predict their experimental performance using a kernel ridge regression model. We compare the prediction accuracy of this approach to that of a prior artificial neural networks study. We confirm the robustness of our data-driven model by blind prediction of the dissolution modulating performance of 10 untested compounds. Finally, a workflow is presented that facilitates the automated discovery of chemicals with desired dissolution modulating properties from a commercial database. We subsequently prove this concept by blind validation of five chemicals.
Subjects
MLE@TUHH
DDC Class
600: Technik
Funding Organisations
Deutscher Akademischer Austauschdienst (DAAD)  
Deutsche Forschungsgemeinschaft (DFG)  
More Funding Information
Funding by HZG MMDi IDEA project is gratefully acknowledged. DM thanks China Scholarship Council for the award of fellowship and funding (No. 201607040051). T.W., D.A.W., and C.F. gratefully acknowledge funding by the Deutscher Akademischer Austauschdienst (DAAD, German Academic Exchange Service) via Projektnummer 57511455. R.M. gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (D.F.G., German Research Foundation) via Projektnummer 192346071—SFB 986 and Projektnummer 390794421—GRK 2462.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

s41529-020-00148-z.pdf

Size

1.54 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback