TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Kinetic modeling of nitrous oxide decomposition on Fe-ZSM-5 in the presence of nitric oxide based on parameters obtained from first-principles calculations
 
Options

Kinetic modeling of nitrous oxide decomposition on Fe-ZSM-5 in the presence of nitric oxide based on parameters obtained from first-principles calculations

Publikationstyp
Journal Article
Date Issued
2021-05-21
Sprache
English
Author(s)
Aranifard, Sara  
Bell, Alexis T.  
Keil, Frerich 
Heyden, Andreas  
Institut
Chemische Reaktionstechnik V-2  
TORE-URI
http://hdl.handle.net/11420/9695
Journal
Catalysis science & technology  
Volume
11
Issue
10
Start Page
3539
End Page
3555
Citation
Catalysis Science and Technology 11 (10): 3539-3555 (2021-05-21)
Publisher DOI
10.1039/d1cy00252j
Scopus ID
2-s2.0-85107005077
A variety of experiments for the N O decomposition over Fe-ZSM-5 catalysts have been simulated in the presence and absence of small amounts of nitric oxide and water vapor. A comprehensive reaction mechanism over mononuclear iron sites was considered, and all elementary reaction rate constants were obtained from density functional theory and transition state theory. Various experimental observations, such as the acceleration of the N O decomposition in the presence of nitric oxide at low temperatures, can be described with the studied reaction mechanism on mononuclear iron sites. No other iron species, such as binuclear iron, are necessary for explaining experimental observations. At high temperatures, Z [FeO] sites are active for N O decomposition, forming either Z [OFeO] and Z [FeO ] sites on which a second N O can decompose to form Z [OFeO ] sites from which O can rapidly desorb. At low temperatures, nitric oxide activates water poisoned Z [Fe(OH) ] sites to form active Z [FeOH] species. The catalytic cycle on Z [FeOH] involves N O dissociation to form Z [OFeOH] sites that are inactive for a second N O decomposition. Instead, NO adsorbs and NO desorbs in order to regenerate the Z [FeOH] sites. On all active iron sites, the first N O dissociation step is the most critical rate-controlling step. The concentration of nitric oxide and water vapor together determine at which temperature the switch between the most dominant active site (hydroxo-versusoxo-iron species) occurs. Overall, this study motivates the investigation of Z [OFeOH] sites as potential α-oxygen species that can oxidize various hydrocarbons at low temperatures.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback