Publisher DOI: 10.1039/d1cy00252j
Title: Kinetic modeling of nitrous oxide decomposition on Fe-ZSM-5 in the presence of nitric oxide based on parameters obtained from first-principles calculations
Language: English
Authors: Aranifard, Sara 
Bell, Alexis T. 
Keil, Frerich 
Heyden, Andreas 
Issue Date: 21-May-2021
Source: Catalysis Science and Technology 11 (10): 3539-3555 (2021-05-21)
Journal: Catalysis science & technology : a multidisciplinary journal focussing on all fundamental science and technological aspects of catalysis 
Abstract (english): 
A variety of experiments for the N O decomposition over Fe-ZSM-5 catalysts have been simulated in the presence and absence of small amounts of nitric oxide and water vapor. A comprehensive reaction mechanism over mononuclear iron sites was considered, and all elementary reaction rate constants were obtained from density functional theory and transition state theory. Various experimental observations, such as the acceleration of the N O decomposition in the presence of nitric oxide at low temperatures, can be described with the studied reaction mechanism on mononuclear iron sites. No other iron species, such as binuclear iron, are necessary for explaining experimental observations. At high temperatures, Z [FeO] sites are active for N O decomposition, forming either Z [OFeO] and Z [FeO ] sites on which a second N O can decompose to form Z [OFeO ] sites from which O can rapidly desorb. At low temperatures, nitric oxide activates water poisoned Z [Fe(OH) ] sites to form active Z [FeOH] species. The catalytic cycle on Z [FeOH] involves N O dissociation to form Z [OFeOH] sites that are inactive for a second N O decomposition. Instead, NO adsorbs and NO desorbs in order to regenerate the Z [FeOH] sites. On all active iron sites, the first N O dissociation step is the most critical rate-controlling step. The concentration of nitric oxide and water vapor together determine at which temperature the switch between the most dominant active site (hydroxo-versusoxo-iron species) occurs. Overall, this study motivates the investigation of Z [OFeOH] sites as potential α-oxygen species that can oxidize various hydrocarbons at low temperatures.
ISSN: 2044-4761
Institute: Chemische Reaktionstechnik V-2 
Document Type: Article
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Dec 5, 2021

Google ScholarTM


Add Files to Item

Note about this record

Cite this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.