Please use this identifier to cite or link to this item:
Publisher DOI: 10.1021/acs.langmuir.1c00559
Title: Synergistic and competitive adsorption of hydrophilic nanoparticles and oil-soluble surfactants at the oil-water interface
Language: English
Authors: Smits, Joeri 
Giri, Rajendra P. 
Shen, Chen 
Mendonça, Diogo 
Murphy, Bridget M. 
Huber, Patrick  
Rezwan, Kurosch 
Maas, Michael 
Issue Date: 27-Apr-2021
Publisher: ACS Pub
Source: Langmuir 37 (18): 5659-5672 (2021)
Abstract (english): 
Fundamental insights into the interplay and self-assembly of nanoparticles and surface-active agents at the liquid-liquid interface play a pivotal role in understanding the ubiquitous colloidal systems present in our natural surroundings, including foods and aquatic life, and in the industry for emulsion stabilization, drug delivery, or enhanced oil recovery. Moreover, well-controlled model systems for mixed interfacial adsorption of nanoparticles and surfactants allow unprecedented insights into nonideal or contaminated particle-stabilized emulsions. Here, we investigate such a model system composed of hydrophilic, negatively, and positively charged silica nanoparticles and the oil-soluble cationic lipid octadecyl amine with in situ synchrotron-based X-ray reflectometry, which is analyzed and discussed jointly with dynamic interfacial tensiometry. Our results indicate that negatively charged silica nanoparticles only adsorb if the oil-water interface is covered with the positively charged lipid, indicating synergistic adsorption. Conversely, the positively charged nanoparticles readily adsorb on their own, but compete with octadecyl amine and reversibly desorb with increasing concentrations of the lipid. These results further indicate that with competitive adsorption, an electrostatic exclusion zone exists around the adsorbed particles. This prevents the adsorption of lipid molecules in this area, leading to a decreased surface excess concentration of surfactants and unexpectedly high interfacial tension.
DOI: 10.15480/882.3593
ISSN: 1520-5827
Journal: Langmuir : the ACS journal of surfaces and colloids 
Institute: Material- und Röntgenphysik M-2 
Document Type: Article
Project: SFB 986: Teilprojekt B7 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen 
Graduiertenkolleg 2462: Prozesse in natürlichen und technischen Partikel-Fluid-Systemen (PintPFS) 
Funded by: Deutsche Forschungsgemeinschaft (DFG) 
License: CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives) CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
acs.langmuir.1c00559-1.pdfVerlags-PDF4,93 MBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Apr 1, 2023


checked on Apr 1, 2023


Last Week
Last month
checked on Jun 29, 2022

PubMed Central

Last Week
Last month
checked on Apr 1, 2023

Google ScholarTM


Note about this record

Cite this record


This item is licensed under a Creative Commons License Creative Commons