DC FieldValueLanguage
dc.contributor.authorFuchs, Sebastian Leonhard-
dc.contributor.authorMeier, Christoph-
dc.contributor.authorWall, Wolfgang A.-
dc.contributor.authorCyron, Christian J.-
dc.date.accessioned2021-07-07T08:02:03Z-
dc.date.available2021-07-07T08:02:03Z-
dc.date.issued2021-09-01-
dc.identifier.citationComputer Methods in Applied Mechanics and Engineering 383: 113922 (2021-09-01)de_DE
dc.identifier.issn0045-7825de_DE
dc.identifier.urihttp://hdl.handle.net/11420/9849-
dc.description.abstractA novel numerical formulation for solving fluid-structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover, this approach facilitates the handling of large deformations of the fluid domain respectively the fluid-structure interface without additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural field is based on a Dirichlet-Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation. Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close to potential application scenarios of the proposed scheme in the field of biomechanics.en
dc.description.sponsorshipDFGde_DE
dc.language.isoende_DE
dc.publisherElsevier Sciencede_DE
dc.relation.ispartofComputer methods in applied mechanics and engineeringde_DE
dc.subjectFinite element methodde_DE
dc.subjectFluid–structure interactionde_DE
dc.subjectIncompressible flowde_DE
dc.subjectIterative Dirichlet–Neumann couplingde_DE
dc.subjectLarge deformationde_DE
dc.subjectSmoothed particle hydrodynamicsde_DE
dc.subjectComputer Science - Computational Engineering; Finance; and Sciencede_DE
dc.subjectComputer Science - Computational Engineering; Finance; and Sciencede_DE
dc.subject.ddc600: Technikde_DE
dc.titleA novel smoothed particle hydrodynamics and finite element coupling scheme for fluid-structure interaction: the sliding boundary particle approachde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishA novel numerical formulation for solving fluid-structure interaction (FSI) problems is proposed where the fluid field is spatially discretized using smoothed particle hydrodynamics (SPH) and the structural field using the finite element method (FEM). As compared to fully mesh- or grid-based FSI frameworks, due to the Lagrangian nature of SPH this framework can be easily extended to account for more complex fluids consisting of multiple phases and dynamic phase transitions. Moreover, this approach facilitates the handling of large deformations of the fluid domain respectively the fluid-structure interface without additional methodological and computational efforts. In particular, to achieve an accurate representation of interaction forces between fluid particles and structural elements also for strongly curved interface geometries, the novel sliding boundary particle approach is proposed to ensure full support of SPH particles close to the interface. The coupling of the fluid and the structural field is based on a Dirichlet-Neumann partitioned approach, where the fluid field is the Dirichlet partition with prescribed interface displacements and the structural field is the Neumann partition subject to interface forces. To overcome instabilities inherent to weakly coupled schemes an iterative fixed-point coupling scheme is employed. Several numerical examples in form of well-known benchmark tests are considered to validate the accuracy, stability, and robustness of the proposed formulation. Finally, the filling process of a highly flexible thin-walled balloon-like container is studied, representing a model problem close to potential application scenarios of the proposed scheme in the field of biomechanics.de_DE
tuhh.publisher.doi10.1016/j.cma.2021.113922-
tuhh.publication.instituteKontinuums- und Werkstoffmechanik M-15de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume383de_DE
dc.relation.projectNumerische Multiphysikmodellierung des postprandialen menschlichen Magensde_DE
dc.relation.projectVaskuläre Wachstums- und Umbildungsprozesse in Aneurysmende_DE
dc.relation.projectExperimentelle Untersuchung und mathematische Modellierung mechanisch gesteuerter Wachstums- und Umbauprozesse in postpubertären Schweineharnblasende_DE
dc.identifier.arxiv2010.09526v2de_DE
dc.identifier.scopus2-s2.0-85107117866de_DE
tuhh.container.articlenumber113922de_DE
local.status.inpressfalsede_DE
item.creatorOrcidFuchs, Sebastian Leonhard-
item.creatorOrcidMeier, Christoph-
item.creatorOrcidWall, Wolfgang A.-
item.creatorOrcidCyron, Christian J.-
item.languageiso639-1en-
item.creatorGNDFuchs, Sebastian Leonhard-
item.creatorGNDMeier, Christoph-
item.creatorGNDWall, Wolfgang A.-
item.creatorGNDCyron, Christian J.-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.mappedtypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptKontinuums- und Werkstoffmechanik M-15-
crisitem.author.deptKontinuums- und Werkstoffmechanik M-15-
crisitem.author.orcid0000-0003-0250-6876-
crisitem.author.orcid0000-0002-3501-1696-
crisitem.author.orcid0000-0001-7419-3384-
crisitem.author.orcid0000-0001-8264-0885-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoCY 75/3-1-
crisitem.project.grantnoCY 75/4-1-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

32
Last Week
1
Last month
3
checked on Jan 20, 2022

SCOPUSTM   
Citations

4
Last Week
0
Last month
0
checked on Jan 21, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.