TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Concentration‐specific constitutive modeling of gelatin based on artificial neural networks
 
Options

Concentration‐specific constitutive modeling of gelatin based on artificial neural networks

Citation Link: https://doi.org/10.15480/882.3897
Publikationstyp
Conference Paper
Date Issued
2021-01-25
Sprache
English
Author(s)
Abdolazizi, Kian Philipp  
Linka, Kevin  
Sprenger, Johanna  
Neidhardt, Maximilian  
Schlaefer, Alexander  
Cyron, Christian J.  
Institut
Kontinuums- und Werkstoffmechanik M-15  
Medizintechnische und Intelligente Systeme E-1  
TORE-DOI
10.15480/882.3897
TORE-URI
http://hdl.handle.net/11420/9856
Journal
Proceedings in applied mathematics and mechanics  
Volume
20
Issue
1
Article Number
202000284
Citation
Proceedings in applied mathematics and mechanics 20 (1): 202000284 (2021)
Contribution to Conference
91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2021)  
Publisher DOI
10.1002/pamm.202000284
Publisher
Wiley-VCH
Gelatin phantoms are frequently used in the development of surgical devices and medical imaging techniques. They exhibit mechanical properties similar to soft biological tissues [1] but can be handled at a much lower cost. Moreover, they enable a better reproducibility of experiments. Accurate constitutive models for gelatin are therefore of great interest for biomedical engineering. In particular it is important to capture the dependence of mechanical properties of gelatin on its concentration. Herein we propose a simple machine learning approach to this end. It uses artificial neural networks (ANN) for learning from indentation data the relation between the concentration of ballistic gelatin and the resulting mechanical properties.
© 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH
DDC Class
570: Biowissenschaften, Biologie
600: Technik
610: Medizin
620: Ingenieurwissenschaften
Funding(s)
I³-Lab - Modell-gestütztes maschinelles Lernen für die Weichgewebsmodellierung in der Medizin  
Projekt DEAL  
More Funding Information
The authors greatfully acknowledge financial support from Hamburg University of Technology (TUHH) within the I3-Lab ‘Modell-gestütztes maschinelles Lernen für die Weichgewebsmodellierung in der Medizin’.
Publication version
acceptedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

pamm.202000284.pdf

Size

543.12 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback