Publisher DOI: 10.1007/s00373-021-02358-x
Title: Cycle spectra of contraction-critically 4-connected planar graphs
Language: English
Authors: Lo, On-Hei Solomon 
Schmidt, Jens M.  
Keywords: Contraction-critically 4-connected graphs; Cycle spectrum; Cycles; Planar graphs
Issue Date: 29-Jun-2021
Publisher: Springer-Verl. Tokyo
Source: Graphs and Combinatorics (2021)
Abstract (english): 
Motivated by the long-standing and wide open pancyclicity conjectures of Bondy and Malkevitch, we study the cycle spectra of contraction-critically 4-connected planar graphs. We show that every contraction-critically 4-connected planar graph on n vertices contains a cycle of length k for every k∈⌊n2⌋-⌈n108⌉,⋯,⌊n2⌋+⌊n36⌋∪23n,⋯,n.
URI: http://hdl.handle.net/11420/9863
ISSN: 1435-5914
Journal: Graphs and combinatorics 
Institute: Algorithmen und Komplexität E-11 
Document Type: Article
Project: Ausfallsicheres Broadcasting durch Unabhängige Spannbäume 
Funded by: Deutsche Forschungsgemeinschaft (DFG) 
More Funding information: On-Hei Solomon Lo’s research was partially supported by NSFC Grants 11971406 and 11622110. Jens M. Schmidt’s research was partially supported by the Grant SCHM 3186/2-1 (401348462) from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

121
Last Week
1
Last month
18
checked on May 29, 2023

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.