Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3695
Publisher DOI: 10.1002/aelm.202100381
Title: Simultaneous enhancement of actuation strain and mechanical strength of nanoporous Ni–Mn actuators
Language: English
Authors: Cheng, Chuan 
Lührs, Lukas 
Krekeler, Tobias 
Keywords: charge-induced strain; dealloying; metallic actuators; nanoporous metals; pesudocapacity
Issue Date: 13-May-2021
Publisher: Wiley-VCH Verlag GmbH & Co. KG
Source: Advanced Electronic Materials 7 (7): 2100381 (2021-07-01)
Abstract (english): 
Metallic electrochemical actuators convert electrical energy into mechanical energy via charge-induced strain at the nanoporous metal/electrolyte interface. To enhance the actuation amplitude, a general choice is to increase the electrode surface area to elevate the charge capacity. However, a large surface area is detrimental to the actuation stability and mechanical strength of the actuator, such as irreversible volume shrinkage due to surface coarsening. Here, this critical issue can be mitigated by introducing a secondary actuation metal (Mn) into the network of a primary actuation metal (Ni). A nanoporous Ni–Mn actuator is synthesized by chemical dealloying with a controllable Mn content by adjusting dealloying conditions. Mn enriched nanowires are entangled with much larger sized Ni nanoligaments throughout the whole nanoporous network. Mn contributes a two-electron-transfer redox of Mn(OH)2/MnOOH/MnO2, which induces reversible volume change via H+ intercalation/deintercalation. It is more efficient for strain generation than a one-electron-transfer redox of Ni(OH)2/NiOOH in the host. A recorded high reversible strain of 1.94% is obtained. Simultaneously, the mechanical strength of the actuator exponentially increases with the relative density due to the introduction of the secondary actuation metal.
URI: http://hdl.handle.net/11420/9991
DOI: 10.15480/882.3695
ISSN: 2199-160X
Journal: Advanced electronic materials 
Institute: Werkstoffphysik und -technologie M-22 
Betriebseinheit Elektronenmikroskopie M-26 
Document Type: Article
Project: SFB 986: Teilprojekt B2 - Feste und leichte Hybridwerkstoffe auf Basis nanoporöser Metalle 
Projekt DEAL 
Funded by: Alexander von Humboldt-Stiftung 
License: CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives) CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives)
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
aelm.202100381.pdfVerlags-PDF6,53 MBAdobe PDFView/Open
Thumbnail
Show full item record

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons