TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. CRIS
  3. Funding
  4. Microwave Sensors for the Dielectric Characterization of Biological Cells
 
  • Project Details
  • Publications
Options
Akronym
MEDICO
Projekt Titel
Microwave Sensors for the Dielectric Characterization of Biological Cells
Förderkennzeichen
JA 605/14-1
Funding code
945.03-871
Startdatum
August 1, 2019
Enddatum
December 31, 2021
Gepris ID
423711081
Loading...
Thumbnail Image
Funder
Deutsche Forschungsgemeinschaft (DFG)  
Institut
Hochfrequenztechnik E-3  
Projektleitung
Jacob, Arne  
Mitarbeitende
Savić, Aleksandar
As extensively discussed in the relevant literature, microwave cell characterization offers the distinct advantage of being non-destructive and label-free. This is expected to open-up new opportunities in biomedical and biotechnological applications. Measurements on both cell suspensions and single cells in microfluidic channels have been reported and differences in the (electromagnetic) response of healthy and dead cells have been documented. However, so far only little effort has been spent at single-cell level in determining a unique signature, like the permittivity. The influence of the cell size and of its inhomogeneity has not been addressed at all. We aim at closing this gap by developing (miniaturized) high-frequency sensors and characterization methods with which the broadband dielectric properties of single cells can be determined independently of their size. It shall be taken into account that cells are irregularly shaped, squeezable, and possibly inhomogeneous. To reach these goals we propose two complementary approaches. The first one shall rely on a planar sensor probing only a part of the cell, but not the surrounding culture medium. For a comprehensive examination, the cell shall be probed from different directions/angles. For this, it is to be rotated, which shall be done electrically by means of electrorotation. This will be combined with dielectrophoresis to yield a very flexible means to manipulate and position the cells.In the second approach, the cell shall be probed with a homogeneous field. For this, the sensor shall be a parallel plate capacitor provided with properly biased guard electrodes, a well-proven way to mitigate the negative effect of fringing fields at low frequencies. The sensor shall thus illuminate the whole cell – or at least significant portions of it. A simple three way single cell mechanical trap is to be integrated in this approach.In both approaches, the broadband permittivity shall be extracted by means of measurement-based equivalent circuit models. For this, a simple calibration procedure, which has been developed at our institute, shall be adapted. A (statistical) comparison of the results from the two approaches is expected to provide clues regarding their meaningfulness. This will help classifying, interpreting, and understanding the results obtained with cells of different pathological state.The ultimate objective of this project phase is to find a permittivity footprint for different commercially available cell lines and to differentiate, as far as possible, between different pathological states of cells, which could be healthy, dead, cancerous, or affected by electroporation. In a possible second project phase, the measurements and methods shall be applied to study primary cells.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback