Browsing by browse.metadata.pjinstitute "Fluiddynamik und Schiffstheorie M-8"
Now showing1 - 6 of 6
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Project without files Analyse der Strahlausbreitung und Schallemissionen von Schiffsmanövrierorganen durch SimulationDie alternde Infrastruktur der See- und Binnenhäfen muss an moderne Schiffsantriebe angepasst werden, denn diese werden laufend optimiert, was zu einer großen Belastung der Hafenanlagen und erhöhten Investitionskosten führt. Ziel des geplanten Vorhabens ist, nachhaltige Bemessungsgrundlagen für die Hafenplanung zu schaffen, indem neue Ansätze zur genaueren Erfassung der Interaktion zwischen Schiff und Hafenanlage entwickelt werden. Dies umfasst die Bestimmung der Propellerstrahlausbreitung und der damit verbundenen Erosionserscheinungen. Dafür werden die An- und Ablegemanöver verschiedener Schiffe analysiert, die Strahlausbreitung numerisch simuliert und die Auskolkung experimentell im Modellmaßstab untersucht. Außerdem wird die Geräuschentwicklung über und unter Wasser erfasst und ausgewertet. Die neuen Ansätze für Strahlausbreitung und zeitabhängige Kolkbildung werden für gängige Schiffstypen validiert. Zusätzlich werden im Lübecker Hafen an einer zu bauenden Anlegestelle Felddaten wie Druck- und Geschwindigkeit, Sohlenlage und Geräuschentwicklung kontinuierlich erhoben. Dies bietet den Hafenbetreibern eine solide Bewertungs-grundlage für nachhaltige und umweltgerechte Investitionen.Acronym:ASSESSStart Date:2021-12-01End Date:2024-11-30Principal Investigator:Institute:98 - Some of the metrics are blocked by yourconsent settings
Project without files Hydrodynamische Optimierung der Manövrierfähigkeit von Offshore Transport- und Transfersystemen hier: HyMOTT-MOTION - Modellierung von Offshore-Transportsystemen im Kontext von Overset-NetzenThe BMWi-sponsored project HyMOTT-MOTiON deals with the development and application of simulation tools for the hydrodynamic analysis and optimization of offshore vessels for the transport and installation of offshore structures. The vessels feature compact propulsion and manoeuvring devices which show intense interaction with the hull. This essentially limits the operation conditions for various scenarios and concerns especially the dynamic positioning capabilities in challenging environmental and operational conditions, enforces additional resistance and increases vibrations and noise which bother the crew and lead to wear of the vessels components. For this purpose methods should be developed and combined for practical application.Acronym:HyMOTTStart Date:2015-04-01End Date:2018-07-31Principal Investigator:Institute:156 - Some of the metrics are blocked by yourconsent settings
Project without files GRK 2583: Modeling, Simulation and Optimization of Fluid Dynamic ApplicationsThe RTG aims at the holistic education of junior scientists in the mathematical fields of Modeling, Simulation, and Optimization (MSO). The mathematical focus of the RTG is on mathematical modeling, adaptive discretization & approximation algorithms, mathematical data analysis, and shape optimization with PDEs. The RTG's research activities address challenging fluid dynamic problems, where they are inspired by Hamburgspecific applied sciences, such as climate research & meteorology, aerospace & marine engineering, or medicine. Our approach to next generation MSO is based on the leitmotif of the RTG: Mathematics drives applications while being inspired by applications. With this leitmotif the RTG carries forward and improves education and research in MSO by an inherent interdisciplinary approach, i.e., to stimulate fundamental education and research in MSOmathematics by highly complex applications and at the same time transfer tailored MSO-methods developed in mathematics to applied sciences. In this way, the RTG promotes an exchange of research paradigms between the participating disciplines and provides a modern approach to training in fundamental MSO-research for scientfically and socially relevant current problems. The RTG has a clear scientific focus with a well aligned educational profile. The leitmotif is implemented through nine thematically intertwined research topics, which combine aspects of MSOmathematics with an associated fluid dynamic application. Key technologies will jointly be developed and disseminated through lab-activities. Scientific exchange is facilitated and fostered through lecture series, research seminars, colloquia, annual retreats, and summer schools. The international networking of the RTG will benefit from a distinguished guest program involving a variety of world leading experts. The RTG will be hosted by the Lothar Collatz Center for Computing in Science. In particular, the RTG will be embedded in the well-established structures of the Lothar Collatz Graduate School. The academic platform of the RTG is enhanced by joining forces with established activities of the C3S and LCGS, e.g. the Lothar Collatz Seminar, and by contributing to the annual Plön Young Researcher Meeting & Workshop, and by the comprehensive course program of the Hamburg Research Academy (HRA, see Section. The educational program is based on long-standing collaborations of the involved researchers and institutions. The qualification concept is well connected to local and international educational programs that are jointly operated by the UHH and the TUHH. It reects shared experience on best practices and also supports our ambition for a rapid initial advancement as well as leadership skill promotion. Thus, the curriculum involves innovative training modules e.g. research management or entrepreneurship courses supplementary to the scientific education. With this approach the RTG is unique and will perform interdisciplinary researchAcronym:GRK2583Start Date:2020-04-01End Date:2024-09-30Principal Investigator:Institute:; Institute: 1141 - Some of the metrics are blocked by yourconsent settings
Project with files Reduktion der hydroakustischen Emission von Propulsionssystemen; Kalkulation des durch Propulsionssystemen mit Rudern oder Flossenkappen emittierten Unterwasser-SchallsDas Verbundvorhaben beschäftigt sich mit der Vorhersage von Schallemissionen durch Schiffsantriebsanlagen. Signifikante Schallquellen stellen dabei die Propellerdruckfelder, fluktuierende Schicht- und Wirbelkavitation sowie der Körperschall dar. Diese Effekte sollen in diesem Vorhaben numerisch modelliert werden, um eine effiziente numerische Prognose zu ermöglichen. Die Wechselwirkung der erstgenannten physikalischen Phänomene soll dabei ebenfalls berücksichtigt werden. In diesem Teilvorhaben liegt der Schwerpunkt auf der Simulation der Umströmung und hydrodynamischen Wechselwirkung zwischen Propeller und Schiffsanhängen wie Rudern oder anderen Flossen sowie ihrer resultierenden akustischen Emissionen. Um entsprechende Prognosen in einem Entwurfsprozess innerhalb kurzer Zeit zu ermöglichen, sollen diese Interaktionen in einem zeiteffizienten Simulationsverfahren implementiert werden. Zu diesem Zweck werden zunächst mit Unterstützung von detaillierten Simulationen entsprechende Modelle für die realistische Abbildung dieser Wechselwirkungen in einem vereinfachenden Verfahren entwickelt. Mit diesem Verfahren sollen anschließend Ruderpropeller in Zug-Konfiguration sowie Propeller mit Flossenkappen hinsichtlich ihrer hydroakustischen Emission bewertet werden. Auf Basis der Ergebnisse wird ein künstliches neuronales Netz entworfen und trainiert, das die Schallemissionen solcher Konfigurationen vorhersagen kann. Die Zuströmung zum Propeller wird in allen Fällen mittels eines weiterentwickelten, Datenbank-gestützen Ersatzmodells bestimmt. Die zu untersuchenden Teilbereiche in diesem Teilvorhaben sind damit die effiziente Prognose der Schichtkavitation auf dem Propeller, die Wirbelkavitation in Spitzen- und Nabenwirbel sowie die Deformation und Interaktion der freien Wirbel mit weiteren Auftriebsflächen. Hinzu kommen die Vorhersage des Nachstromfelds bei unbekannter Schiffsgeometrie bis auf Hauptabmessungen sowie die Entwicklung eines neuronalen Netzes.Acronym:RED-EMIStart Date:2022-01-01End Date:2024-12-31Principal Investigator:Institute:83 23 - Some of the metrics are blocked by yourconsent settings
Project without files Simulation-based objective of dynamic systems under the aegis of uncertaintiesAufgrund von drastisch reduzierten Zeit- und Finanzbudgets für die Entwicklung neuer Produkte, wird die computergestützte Optimierung virtueller Produktprototypen immer bedeutender. Je unabhängiger (robuster) die Leistungsmerkmale eines optimierten Produktdesigns von späteren fertigungs- oder betriebsbedingten Schwankungen sind, desto wirtschaftlicher lässt sich das Produkt herstellen und betreiben. Insbesondere für wartungs- intensive bzw. wartungsfreie Produkte aus dem Hamburger Luftfahrt- und Medizintechnik- umfeld ist ein robustes Design entscheidend. Ziel des Vorhabens ist die Entwicklung innovativer Simulationsverfahren zur robusten Optimierung komplexer Bauteile. Durch die Verschmelzung von Methoden der Angewandten Mathematik und des Theoretischem Maschinenbaus werden hierzu Modelle entwickelt, die dynamische Betriebsbedingungen und unsichere Fertigungsprozesse bei der Optimierung erfassen.Acronym:SENSUSStart Date:2020-06-01End Date:2023-11-30Principal Investigator:; Principal Investigator: Institute:; Institute: ; Institute: ; Institute: 305 - Some of the metrics are blocked by yourconsent settings
Project without files Transition ManipulationThe project is devoted to the development of bio-inspired coatings of air flow exposed surfaces. The particular aim is to delay the transition from laminar to turbulent flows as well as the drag reduction in fully turbulent regions. The resistance of commercial aircrafts is dominated by friction. Turbulent flows are afflicted with significantly higher friction drag than laminar flows. Although transition can certainly not be avoided, it might be delayed by attenuating the growth of transition inducing flow-instabilities. Moreover compliant coatings can help to reduce the friction in the turbulent regime. The compliant coatings should feature the required mechanical behaviour to reduce the growth of unstable modes. The definition and development of such coatings is the focal point of the project. To this end, the work of TUHH was concerned with the simulation and analysis of the fluid-structure interaction in response to flow instabilities and near wall turbulent motions at large Reynolds-numbers using scale-resolving (turbulence-model free) simulations. A particular Lattice-Boltzmann-Model for GPGPU-hardware was developed and applied to perform the simulations. Results were used to support the definition of the coating for subsequent wind-tunnel experiments.Acronym:TransManStart Date:2016-07-01End Date:2019-12-31Principal Investigator:Institute:226