TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Research Data
  4. Robust Berth Scheduling Using Machine Learning for Vessel Arrival Time Prediction - refined dataset
 
Options

Robust Berth Scheduling Using Machine Learning for Vessel Arrival Time Prediction - refined dataset

Citation Link: https://doi.org/10.15480/336.4471
Type
Dataset
Date Issued
2022-07-22
Author(s)
Kolley, Lorenz  orcid-logo
Quantitative Unternehmensforschung und Wirtschaftsinformatik W-4  
Rückert, Nicolas 
Quantitative Unternehmensforschung und Wirtschaftsinformatik W-4  
Kastner, Marvin  orcid-logo
Maritime Logistik W-12  
Fischer, Kathrin  orcid-logo
Quantitative Unternehmensforschung und Wirtschaftsinformatik W-4  
Jahn, Carlos  orcid-logo
Maritime Logistik W-12  
Language
English
Institute
Quantitative Unternehmensforschung und Wirtschaftsinformatik W-4  
Maritime Logistik W-12  
DOI
10.15480/336.4471
TORE-URI
http://hdl.handle.net/11420/13169
Is Supplement To
10.1007/s10696-022-09462-x
Abstract
The refined dataset consists of edited data from raw AIS data.
The data is organised as follows:
There is one csv file per cargo ship (271 files in total from 1.csv to 271.csv). This file contains all calls of the respective ship at the Port of Miami for the given period from 2018 to 2020. To anonymize the data, the identifying ship data, i.e. the MMSI, was removed. Further information can be found in the paper in Section 3.1. (paper is under review and will be linked here as soon as available)

The raw AIS data which are used are available on the websites of the National Oceanic and Atmospheric Administration (NOAA) Office for Coastal Management. An overview is published here: https://marinecadastre.gov/ais/
Subjects
Berth Allocation Problem
Machine Learning
Uncertainty
Prediction
Robust Optimization
DDC Class
004: Computer Sciences
330: Economics
620: Engineering
Funding(s)
I³-Lab - Business Analytics – Optimierungspotenziale und strategische Risiken für maritime logistische Systeme  
Funding Organisations
Behörde für Wissenschaft, Forschung, Gleichstellung und Bezirke (BWFGB)  
License
https://creativecommons.org/publicdomain/zero/1.0/
No Thumbnail Available
Name

2.csv

Size

246.85 KB

Format

CSV

No Thumbnail Available
Name

139.csv

Size

211.65 KB

Format

CSV

No Thumbnail Available
Name

187.csv

Size

798.54 KB

Format

CSV

No Thumbnail Available
Name

135.csv

Size

746.88 KB

Format

CSV

No Thumbnail Available
Name

237.csv

Size

1.2 MB

Format

CSV

No Thumbnail Available
Name

116.csv

Size

2.38 MB

Format

CSV

No Thumbnail Available
Name

186.csv

Size

675.3 KB

Format

CSV

No Thumbnail Available
Name

209.csv

Size

2.32 MB

Format

CSV

No Thumbnail Available
Name

5.csv

Size

3.68 MB

Format

CSV

No Thumbnail Available
Name

250.csv

Size

1022.81 KB

Format

CSV

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback