TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Generative adversarial networks for creating realistic training data for machine learning-based segmentation of FIB tomography data
 
Options

Generative adversarial networks for creating realistic training data for machine learning-based segmentation of FIB tomography data

Citation Link: https://doi.org/10.15480/882.15136
Publikationstyp
Journal Article
Date Issued
2025-04-22
Sprache
English
Author(s)
Sardhara, Trushal 
Betriebseinheit Elektronenmikroskopie BEEM  
Cyron, Christian J.  
Kontinuums- und Werkstoffmechanik M-15  
Ritter, Martin  orcid-logo
Betriebseinheit Elektronenmikroskopie M-26  
Aydin, Roland 
Machine Learning in Virtual Materials Design M-EXK5  
TORE-DOI
10.15480/882.15136
TORE-URI
https://hdl.handle.net/11420/55512
Journal
Machine Learning: Science and Technology  
Volume
6
Issue
2
Article Number
025023
Citation
Machine Learning: Science and Technology 6 (2): 025023 (2025)
Publisher DOI
10.1088/2632-2153/adc870
Scopus ID
2-s2.0-105003321129
Publisher
IOP Publishing
Accurate 3D reconstruction of the structure of nanomaterials is essential for studying their physical properties. Focused ion beam (FIB) tomography is a preferred method for creating 3D image stacks of micrometer-sized material volumes at nanometer resolution. To achieve valid 3D reconstructions from FIB tomography data, semantic segmentation of these images using machine learning-based methods is often beneficial. However, supervised machine learning requires a large amount of training data and ground truth, which is challenging because FIB tomography is a destructive technique. This motivates the use of synthetic training data generated with Monte Carlo simulations of the FIB tomography process. However, these simulations are computationally expensive, and the resulting synthetic imaging data still differs from real FIB tomography data in terms of the statistical distribution of various features. In this study, we propose a novel approach to overcome both problems, i.e. requiring high computation time and difference in data distribution, using generative adversarial networks.
Subjects
3D reconstruction | domain adaptation | fast simulation | FIB-SEM tomography | synthetic data
DDC Class
620.1: Engineering Mechanics and Materials Science
006: Special computer methods
Funding(s)
SFB 986: Teilprojekt B09 - Mikrostrukturbasierte Klassifizierung und elektronenmikroskopische Analyse nanoporöser Metalle durch maschinelles Lernen  
SFB 986: Zentralprojekt Z03 - Elektronenmikroskopie an multiskaligen Materialsystemen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

Sardhara_2025_Mach._Learn.__Sci._Technol._6_025023.pdf

Type

Main Article

Size

3.63 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback