TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Role of slice thickness quantification in the 3D reconstruction of FIB tomography data of nanoporous materials
 
Options

Role of slice thickness quantification in the 3D reconstruction of FIB tomography data of nanoporous materials

Citation Link: https://doi.org/10.15480/882.8820
Publikationstyp
Journal Article
Date Issued
2024-02
Sprache
English
Author(s)
Sardhara, Trushal 
Kontinuums- und Werkstoffmechanik M-15  
Shkurmanov, Alexander  
Betriebseinheit Elektronenmikroskopie M-26  
Li, Yong  orcid-logo
Werkstoffphysik und -technologie M-22  
Shi, Shan  
Integrated metallic Nanomaterialssystems M-EXK4  
Cyron, Christian J.  
Kontinuums- und Werkstoffmechanik M-15  
Aydin, Roland  
Machine Learning in Virtual Materials Design M-EXK5  
Ritter, Martin  orcid-logo
Betriebseinheit Elektronenmikroskopie M-26  
TORE-DOI
10.15480/882.8820
TORE-URI
https://hdl.handle.net/11420/44166
Journal
Ultramicroscopy  
Volume
256
Start Page
1
End Page
9
Article Number
113878
Citation
Ultramicroscopy 256: 1-9 (2024)
Publisher DOI
10.1016/j.ultramic.2023.113878
Scopus ID
2-s2.0-85175180548
Publisher
Elsevier
In focused ion beam (FIB) tomography, a combination of FIB with a scanning electron microscope (SEM) is used for collecting a series of planar images of the microstructure of nanoporous materials. These planar images serve as the basis for reconstructing the three-dimensional microstructure through segmentation algorithms. However, the assumption of a constant distance between consecutively imaged sections is generally invalid due to random variations in the FIB milling process. This variation complicates the accurate reconstruction of the three-dimensional microstructure. Using synthetic FIB tomography data, we present an algorithm that repositions slices according to their actual thickness and interpolates the results using machine learning-based methods. We applied our algorithm to real datasets, comparing two standard approaches of microstructure reconstruction: on-the-fly via image processing and ruler-based via sample structuring. Our findings indicate that the ruler-based method, combined with our novel slice repositioning and interpolation algorithm, exhibits superior performance in reconstructing the microstructure.
Subjects
Accurate reconstruction
FIB
Image inpainting
Slice repositioning
Slice thickness determination
MLE@TUHH
DDC Class
620: Engineering
Funding(s)
SFB 986: Tailor-Made Multi-Scale Materials Systems - M3  
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S030439912300195X-main.pdf

Type

Main Article

Size

2.75 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback