TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Constitutive Kolmogorov–Arnold Networks (CKANs): Combining accuracy and interpretability in data-driven material modeling
 
Options

Constitutive Kolmogorov–Arnold Networks (CKANs): Combining accuracy and interpretability in data-driven material modeling

Citation Link: https://doi.org/10.15480/882.15357
Publikationstyp
Journal Article
Date Issued
2025-10-01
Sprache
English
Author(s)
Abdolazizi, Kian Philipp  
Kontinuums- und Werkstoffmechanik M-15  
Aydin, Roland  
Machine Learning in Virtual Materials Design M-EXK5  
Cyron, Christian J.  
Kontinuums- und Werkstoffmechanik M-15  
Linka, Kevin  
Kontinuums- und Werkstoffmechanik M-15  
TORE-DOI
10.15480/882.15357
TORE-URI
https://hdl.handle.net/11420/56130
Journal
Journal of the mechanics and physics of solids  
Volume
203
Article Number
106212
Citation
Journal of the Mechanics and Physics of Solids 203: 106212 (2025)
Publisher DOI
10.1016/j.jmps.2025.106212
Scopus ID
2-s2.0-105008298518
Publisher
Elsevier
Hybrid constitutive modeling integrates two complementary approaches for describing and predicting a material's mechanical behavior: purely data-driven black-box methods and physically constrained, theory-based models. While black-box methods offer high accuracy, they often lack interpretability and extrapolability. Conversely, physics-based models provide theoretical insight and generalizability but may not capture complex behaviors with the same accuracy. Traditionally, hybrid modeling has required a trade-off between these aspects. In this paper, we show how recent advances in symbolic machine learning — specifically Kolmogorov–Arnold Networks (KANs) — help to overcome this limitation. We introduce Constitutive Kolmogorov–Arnold Networks (CKANs) as a new class of hybrid constitutive models. By incorporating a post-processing symbolification step, CKANs combine the predictive accuracy of data-driven models with the interpretability and extrapolation capabilities of symbolic expressions, bridging the gap between machine learning and physical modeling.
Subjects
Constitutive Artificial Neural Networks
Data-driven mechanics
Interpretable machine learning
Kolmogorov–Arnold Networks
Physics-informed machine learning
Soft materials
Symbolic regression
DDC Class
620.1: Engineering Mechanics and Materials Science
006.3: Artificial Intelligence
Funding(s)
Projekt DEAL  
Computational Intelligence für die Mechanik weicher Materialien  
Computergestützte Funktionalitätsbewertung von Gelenkknorpel auf der Basis von Magnet-Resonanz-Tomographie-Bilddaten  
Lizenz
https://creativecommons.org/licenses/by/4.0/
Publication version
publishedVersion
Loading...
Thumbnail Image
Name

1-s2.0-S0022509625001887-main.pdf

Size

3.21 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback