TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. A 3D-1D-0D multiscale model of the neuro-glial-vascular unit for synaptic and vascular dynamics in the dorsal vagal complex
 
Options

A 3D-1D-0D multiscale model of the neuro-glial-vascular unit for synaptic and vascular dynamics in the dorsal vagal complex

Citation Link: https://doi.org/10.15480/882.16298
Publikationstyp
Journal Article
Date Issued
2025-12-25
Sprache
English
Author(s)
Hermann, Alexander  
Helmholtz-Zentrum Hereon  
Köppl, Tobias  
Wagner, Andreas  
Shojaei, Arman  
Wohlmuth, Barbara  
Aydin, Roland  
Cyron, Christian J.  
Kontinuums- und Werkstoffmechanik M-15  
Miftahof, Roustem  
Kontinuums- und Werkstoffmechanik M-15  
TORE-DOI
10.15480/882.16298
TORE-URI
https://hdl.handle.net/11420/59618
Journal
Journal of mathematical biology  
Volume
92
Issue
1
Article Number
3
Citation
Journal of Mathematical Biology 92 (1): 3 (2026)
Publisher DOI
10.1007/s00285-025-02317-7
Scopus ID
2-s2.0-105023452684
Publisher
Springer
Cerebral blood flow regulation is critical for brain function, and its disruption is implicated in various neurological disorders. Many existing models do not fully capture the complex, multiscale interactions among neuronal activity, astrocytic signaling, and vascular dynamics, especially in key brainstem regions. In this work, we present a 3D-1D-0D multiscale computational framework for modeling the neuro-glial-vascular unit (NGVU) in the dorsal vagal complex (DVC). Our approach integrates a quadripartite synapse model, which captures the dynamic interactions among excitatory and inhibitory neurons, astrocytes, and vascular smooth muscle cells, with a hierarchical description of vascular dynamics that couples a three-dimensional microcirculatory network with a one-dimensional macrocirculatory representation and a zero-dimensional synaptic component. By linking neuronal spiking, astrocytic calcium and gliotransmitter signaling, and vascular tone regulation, our model reproduces key features of neurovascular regulation and elucidates the feedback loops that help maintain cerebral blood flow. Simulation results demonstrate that neurotransmitter release triggers astrocytic responses that modulate vessel radius, thereby influencing local oxygen and nutrient delivery. This integrated framework provides a robust and modular platform for future investigations into the pathophysiology of cerebral blood flow regulation and its role in autonomic control, including the regulation of gastric function.
Subjects
Dorsal Vagal Complex
Multiscale modeling
Neuro-Glial-Vascular unit
Neurovascular regulation
Synaptic dynamics
Vascular tone regulation
DDC Class
610: Medicine, Health
616: Diseases
Funding(s)
Numerische Modellierung der Steuerung der Motilität des menschlichen Magens durch die Hirn-Magen-Achse  
Lizenz
https://creativecommons.org/licenses/by/4.0/
Publication version
publishedVersion
Loading...
Thumbnail Image
Name

s00285-025-02317-7.pdf

Type

Main Article

Size

5.06 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback