TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Synthetic training data generation for visual object identification on load carriers
 
Options

Synthetic training data generation for visual object identification on load carriers

Citation Link: https://doi.org/10.15480/882.3988
Publikationstyp
Journal Article
Date Issued
2021-09
Sprache
English
Author(s)
Schoepflin, Daniel  orcid-logo
Holst, Dirk  orcid-logo
Gomse, Martin  
Schüppstuhl, Thorsten  orcid-logo
Institut
Flugzeug-Produktionstechnik M-23  
TORE-DOI
10.15480/882.3988
TORE-URI
http://hdl.handle.net/11420/11203
Journal
Procedia CIRP  
Volume
104
Start Page
1257
End Page
1262
Citation
Procedia CIRP 104 : 1257-1262 (2021)
Contribution to Conference
54th CIRP Conference on Manufacturing Systems, CMS 2021  
Publisher DOI
10.1016/j.procir.2021.11.211
Scopus ID
2-s2.0-85121618411
Publisher
Elsevier
Peer Reviewed
true
With visual AI processes relying on individual and context accurate training data, the existing common object datasets and randomization based synthetic data pipelines can only hardly be transferred or applied on specific and narrow industrial tasks. To enable visual AI applications for intralogistics processes, such as supervision or localization of objects, a domain-knowledge driven implementation for generation of context accurate synthetic training data is introduced. With this consideration of process and domain requirements in the data generation pipeline itself, a data-generator for object identification on load carriers is contributed.
Subjects
Production Automation
Intralogistics
Synthetic Training Data
AI Data Generation
Object Identification
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding(s)
Entwicklung und prototypische Erprobung von intelligenten und modularen Ladungsträgern zur schnelleren und effizienteren Materialversorgung bei der Flugzeugproduktion  
Funding Organisations
Bundesministerium für Wirtschaft und Energie - BMWi  
More Funding Information
Research was funded by the German Federal Ministry for Economics and Energy under the Program LuFo V-3 DEPOT.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S2212827121011094-main(1).pdf

Size

1.14 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback