TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A Modified Branch-Current Based Algorithm for Fast Low Voltage Distribution Grid State Estimation using Smart Meter Data
 
Options

A Modified Branch-Current Based Algorithm for Fast Low Voltage Distribution Grid State Estimation using Smart Meter Data

Publikationstyp
Conference Paper
Date Issued
2021-05
Sprache
English
Author(s)
Ipach, Hanko  orcid-logo
Stock, Simon  orcid-logo
Becker, Christian  orcid-logo
Institut
Elektrische Energietechnik E-6  
TORE-URI
http://hdl.handle.net/11420/9821
Citation
Von Komponenten bis zum Gesamtsystem fur die Energiewende (ETG-Kongress 2021)
Contribution to Conference
ETG-Kongress 2021  
Scopus ID
2-s2.0-85117607714
We present a modified version of the branch-current based weighted-least-squares (WLS) state estimation for application in three-phase low-voltage power distribution grids with a single transformer connection to the superordinate medium-voltage level. In our approach, voltage magnitude measurements are utilized to estimate the slack node voltage in a backward-sweep procedure separated from the WLS loop. As a result of excluding the voltage measurements from the WLS loop, the measurement functions are linear in the state variables as long as only power and power flow measurements are considered besides voltage measurements. Therefore, the computational complexity is significantly reduced compared to the straightforward way of including the nonlinear voltage magnitude measurement equations in the WLS loop. The proposed method is numerically evaluated in time-series simulations using various low-voltage benchmark grids. The results in terms of accuracy and speed are compared to the nonlinear node voltage based WLS approach as well as to a linear sensitivity-based method. It is shown that our algorithm yields an accuracy similar to the nonlinear WLS approach while requiring significantly less computation time.
Funding(s)
Optimale Nutzung Regenerativer Energien in Niederspannungsverteilnetzen  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback