TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Reduktion analytischer Impedanzfunktionen auf lineare Matrizenpolynome am Beispiel der dynamischen Seilsteifigkeit
 
Options

Reduktion analytischer Impedanzfunktionen auf lineare Matrizenpolynome am Beispiel der dynamischen Seilsteifigkeit

Citation Link: https://doi.org/10.15480/882.351
Other Titles
Reduction of analytic impedance function to linear matrix polynomial - exemplified for dynamic cable stiffness
Publikationstyp
Journal Article
Date Issued
1992-06
Sprache
German
Author(s)
Starossek, Uwe 
Institut
Baustatik B-4  
TORE-DOI
10.15480/882.351
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/353
Journal
Archive of applied mechanics  
Volume
62
Issue
6
Start Page
428
End Page
434
Citation
Archive of applied mechanics 62 (1992) 6, pp 428-34
Publisher DOI
10.1007/BF00804603
Publisher
Springer-Verlag
For the dynamic stiffness of a sagging cable subject to harmonic boundary displacements, frequency-dependent closed-form analytic functions can be derived from the corresponding continuum equations. By consideration of such functions in stiffness matrices of composed systems, however, these matrices become frequency-dependent, too a troublesome fact, especially with regard to the eigenvalue problem which becomes nonlinear. In this paper a method for avoiding such difficulties is described: A complex analytic impedance function is reduced to two constant matrices of any desired dimension. This reduction corresponds to a mathematically performed transition from a continuum to a discrete-coordinate vibrating system. In structural dynamics applications such as for dynamic cable stiffness the two resultant matrices correspond to a static stiffness matrix and a mass matrix. In every case, these matrices can easily be considered within the scope of a linear eigenvalue problem.
DDC Class
620: Ingenieurwissenschaften
Lizenz
http://doku.b.tu-harburg.de/doku/lic_ohne_pod.php
Loading...
Thumbnail Image
Name

S0001112.pdf

Size

305.5 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback