Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.1019
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorGijzen, Martin Bastiaan van-
dc.contributor.authorSleijpen, Gerard L. G.-
dc.contributor.authorZemke, Jens-Peter M.-
dc.date.accessioned2011-08-17T11:22:28Zde_DE
dc.date.available2011-08-17T11:22:28Zde_DE
dc.date.issued2011-08-
dc.identifier.other666196621de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/1021-
dc.description.abstractWe give two important generalizations of the Induced Dimension Reduction (IDR) approach for the solution of linear systems. We derive a flexible and a multi-shift Quasi-Minimal Residual IDR (QMRIDR) variant. Numerical examples are presented to show the effectiveness of these new IDR variants compared to existing ones and to other Krylov subspace methods.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 156-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://doku.b.tu-harburg.de/doku/lic_mit_pod.phpde
dc.subjectIterative Verfahrende_DE
dc.subjectInduzierte Dimensions-Reduktionde_DE
dc.subjectIDRde_DE
dc.subjectIDR(s)de_DE
dc.subjectKrylov-Unterraum-Verfahrende_DE
dc.subjectIterative methodsde_DE
dc.subjectIDRde_DE
dc.subjectIDR(s)de_DE
dc.subjectKrylov subspace methodsde_DE
dc.subjectlarge sparse nonsymmetric linear systemsde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleFlexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systemsde_DE
dc.typePreprintde_DE
dc.identifier.urnurn:nbn:de:gbv:830-tubdok-11140de_DE
dc.identifier.doi10.15480/882.1019-
dc.type.dinipreprint-
dc.subject.gndKrylov-Verfahrende
dc.subject.gndLineare Gleichungde
dc.subject.gndAngewandte Mathematikde
dc.subject.ddccode510-
dc.subject.msc65F10:Iterative methods for linear systemsen
dc.subject.msc65F50:Sparse matricesen
dc.subject.msccode65F10-
dc.subject.msccode65F50-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-tubdok-11140de_DE
tuhh.publikation.typreportde_DE
tuhh.opus.id1114de_DE
tuhh.gvk.ppn666196621de_DE
tuhh.oai.showtruede_DE
tuhh.pod.urlhttp://www.epubli.de/oai/tu-hamburg/1114?idp=urn:nbn:de:gbv:830-tubdok-11140de_DE
tuhh.pod.allowedtruede_DE
dc.identifier.hdl11420/1021-
tuhh.abstract.englishWe give two important generalizations of the Induced Dimension Reduction (IDR) approach for the solution of linear systems. We derive a flexible and a multi-shift Quasi-Minimal Residual IDR (QMRIDR) variant. Numerical examples are presented to show the effectiveness of these new IDR variants compared to existing ones and to other Krylov subspace methods.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.1019-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id20de_DE
tuhh.type.id20-
tuhh.gvk.hasppntrue-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930768368-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber156de_DE
item.grantfulltextopen-
item.creatorGNDGijzen, Martin Bastiaan van-
item.creatorGNDSleijpen, Gerard L. G.-
item.creatorGNDZemke, Jens-Peter M.-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.fulltextWith Fulltext-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.openairetypePreprint-
item.creatorOrcidGijzen, Martin Bastiaan van-
item.creatorOrcidSleijpen, Gerard L. G.-
item.creatorOrcidZemke, Jens-Peter M.-
item.seriesrefPreprints des Institutes für Mathematik;156-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-5748-8727-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Bericht156.pdf1,55 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

513
Last Week
1
Last month
2
checked on Oct 24, 2020

Download(s)

243
checked on Oct 24, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.