Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.3815
DC FieldValueLanguage
dc.contributor.authorEichinger, Jonas-
dc.contributor.authorGrill, Maximilian-
dc.contributor.authorDavoodi Kermani, Iman-
dc.contributor.authorAydin, Roland C.-
dc.contributor.authorWall, Wolfgang A.-
dc.contributor.authorHumphrey, Jay Dowell-
dc.contributor.authorCyron, Christian J.-
dc.date.accessioned2021-10-12T07:29:52Z-
dc.date.available2021-10-12T07:29:52Z-
dc.date.issued2021-06-25-
dc.identifier.citationBiomechanics and Modeling in Mechanobiology 20 (5): 1851-1870 (2021-10-01)de_DE
dc.identifier.issn1617-7940de_DE
dc.identifier.urihttp://hdl.handle.net/11420/10473-
dc.description.abstractLiving soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)de_DE
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.relation.ispartofBiomechanics and modeling in mechanobiologyde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subjectcell–extracellular matrix interactionde_DE
dc.subjectdiscrete fiber modelde_DE
dc.subjectfinite element methodde_DE
dc.subjectgrowth and remodelingde_DE
dc.subjectmechanical homeostasisde_DE
dc.subject.ddc600: Technikde_DE
dc.titleA computational framework for modeling cell–matrix interactions in soft biological tissuesde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.3815-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0147055-
tuhh.oai.showtruede_DE
tuhh.abstract.englishLiving soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.de_DE
tuhh.publisher.doi10.1007/s10237-021-01480-2-
tuhh.publication.instituteKontinuums- und Werkstoffmechanik M-15de_DE
tuhh.identifier.doi10.15480/882.3815-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue5de_DE
tuhh.container.volume20de_DE
tuhh.container.startpage1851de_DE
tuhh.container.endpage1870de_DE
dc.relation.projectProjekt DEALde_DE
dc.relation.projectVaskuläre Wachstums- und Umbildungsprozesse in Aneurysmende_DE
dc.relation.projectExperimentelle Untersuchung und mathematische Modellierung mechanisch gesteuerter Wachstums- und Umbauprozesse in postpubertären Schweineharnblasende_DE
dc.identifier.pmid34173132de_DE
dc.rights.nationallicensefalsede_DE
dc.identifier.scopus2-s2.0-85108826519de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
local.funding.infoThe authors also gratefully acknowledge financial support by the International Graduate School of Science and Engineering (IGSSE) of Technical University of Munich, Germany.de_DE
item.creatorOrcidEichinger, Jonas-
item.creatorOrcidGrill, Maximilian-
item.creatorOrcidDavoodi Kermani, Iman-
item.creatorOrcidAydin, Roland C.-
item.creatorOrcidWall, Wolfgang A.-
item.creatorOrcidHumphrey, Jay Dowell-
item.creatorOrcidCyron, Christian J.-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.creatorGNDEichinger, Jonas-
item.creatorGNDGrill, Maximilian-
item.creatorGNDDavoodi Kermani, Iman-
item.creatorGNDAydin, Roland C.-
item.creatorGNDWall, Wolfgang A.-
item.creatorGNDHumphrey, Jay Dowell-
item.creatorGNDCyron, Christian J.-
item.grantfulltextopen-
item.mappedtypeArticle-
item.openairetypeArticle-
crisitem.funder.funderid501100001659-
crisitem.funder.funderrorid018mejw64-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantnoCY 75/4-1-
crisitem.author.deptKontinuums- und Werkstoffmechanik M-15-
crisitem.author.deptKontinuums- und Werkstoffmechanik M-15-
crisitem.author.orcid0000-0002-1360-2137-
crisitem.author.orcid0000-0003-1680-0259-
crisitem.author.orcid0000-0002-9542-9146-
crisitem.author.orcid0000-0001-7419-3384-
crisitem.author.orcid0000-0003-1011-2025-
crisitem.author.orcid0000-0001-8264-0885-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Eichinger2021_Article_AComputationalFrameworkForMode.pdfVerlags-PDF6,48 MBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

33
checked on Oct 21, 2021

Download(s)

8
checked on Oct 21, 2021

SCOPUSTM   
Citations

1
checked on Oct 19, 2021

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons