Please use this identifier to cite or link to this item:
https://doi.org/10.15480/882.3952

DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Taraz, Anusch | - |
dc.contributor.author | Haupt, Alexander | - |
dc.date.accessioned | 2021-12-07T10:45:29Z | - |
dc.date.available | 2021-12-07T10:45:29Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Technische Universität Hamburg (2021) | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/11138 | - |
dc.description.abstract | Wir finden einen kombinatorischen Beweis der Selbergschen Integralformel, welches eine Frage von Stanley beantwortet. Dann zählen wir S-omino-Türme bijektiv ab. Auch berechnen wir die erzeugende Funktion von reihenkonvexen k-omino-Türmen. Anschließend zählen wir Rundwege auf einem Schachbrett, die ein Turm ablaufen kann, bijektiv ab. Zuletzt beschäftigen wir uns mit einer probabilistischen Version eines kombinatorischen Problems von Freedman. | de |
dc.description.abstract | This thesis is divided into four parts. We present a combinatorial proof of Selberg's integral formula, which answers a question posed by Stanley. In the second part we enumerate S-omino towers bijectively. We also calculate the generating function of row-convex k-omino towers. In the third part we enumerate walks a rook can move along on a chess board. Finally, we study a new probabilistic version of a combinatorial problem posed by Freedman. | en |
dc.language.iso | en | de_DE |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | de_DE |
dc.subject | combinatorial proofs | de_DE |
dc.subject | bijective proofs | de_DE |
dc.subject | selbergs integral formula | de_DE |
dc.subject | domino towers | de_DE |
dc.subject | rook paths | de_DE |
dc.subject | anchored random structures | de_DE |
dc.subject.ddc | 500: Naturwissenschaften | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | New combinatorial proofs for enumeration problems and random anchored structures | de_DE |
dc.type | Thesis | de_DE |
dcterms.dateAccepted | 2021-09-21 | - |
dc.identifier.doi | 10.15480/882.3952 | - |
dc.type.thesis | doctoralThesis | de_DE |
dc.type.dini | doctoralThesis | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:830-882.0161290 | - |
tuhh.oai.show | true | de_DE |
tuhh.abstract.german | Wir finden einen kombinatorischen Beweis der Selbergschen Integralformel, welches eine Frage von Stanley beantwortet. Dann zählen wir S-omino-Türme bijektiv ab. Auch berechnen wir die erzeugende Funktion von reihenkonvexen k-omino-Türmen. Anschließend zählen wir Rundwege auf einem Schachbrett, die ein Turm ablaufen kann, bijektiv ab. Zuletzt beschäftigen wir uns mit einer probabilistischen Version eines kombinatorischen Problems von Freedman. | de_DE |
tuhh.abstract.english | This thesis is divided into four parts. We present a combinatorial proof of Selberg's integral formula, which answers a question posed by Stanley. In the second part we enumerate S-omino towers bijectively. We also calculate the generating function of row-convex k-omino towers. In the third part we enumerate walks a rook can move along on a chess board. Finally, we study a new probabilistic version of a combinatorial problem posed by Freedman. | de_DE |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.identifier.doi | 10.15480/882.3952 | - |
tuhh.type.opus | Dissertation | - |
tuhh.gvk.hasppn | false | - |
tuhh.contributor.referee | Srivastav, Anand | - |
tuhh.hasurn | false | - |
dc.type.driver | doctoralThesis | - |
thesis.grantor.universityOrInstitution | Technische Universität Hamburg | de_DE |
thesis.grantor.place | Hamburg | de_DE |
dc.type.casrai | Dissertation | - |
dc.rights.nationallicense | false | de_DE |
local.status.inpress | false | de_DE |
datacite.resourceType | Dissertation | - |
datacite.resourceTypeGeneral | Text | - |
item.languageiso639-1 | en | - |
item.creatorGND | Haupt, Alexander | - |
item.grantfulltext | open | - |
item.advisorGND | Taraz, Anusch | - |
item.fulltext | With Fulltext | - |
item.openairetype | Thesis | - |
item.refereeGND | Srivastav, Anand | - |
item.refereeOrcid | Srivastav, Anand | - |
item.advisorOrcid | Taraz, Anusch | - |
item.creatorOrcid | Haupt, Alexander | - |
item.mappedtype | doctoralThesis | - |
item.openairecristype | http://purl.org/coar/resource_type/c_46ec | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematik E-10 | - |
crisitem.author.orcid | 0000-0003-1919-6325 | - |
crisitem.author.parentorg | Studiendekanat Elektrotechnik, Informatik und Mathematik | - |
Appears in Collections: | Publications with fulltext |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Haupt_Alexander_New-Combinatorial-Proofs-for-Enumeration-Problems-and-Random-Anchored-Structures.pdf | 946,78 kB | Adobe PDF | View/Open![]() |
Page view(s)
113
Last Week
1
1
Last month
checked on Aug 17, 2022
Download(s)
87
checked on Aug 17, 2022
Google ScholarTM
Check
Note about this record
Cite this record
Export
Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.