DC FieldValueLanguage
dc.contributor.authorLampe, Jörg-
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2021-12-15T11:48:00Z-
dc.date.available2021-12-15T11:48:00Z-
dc.date.issued2021-
dc.identifier.citationElectronic Transactions on Numerical Analysis 55 : 1-75 (2021)de_DE
dc.identifier.issn1068-9613de_DE
dc.identifier.urihttp://hdl.handle.net/11420/11302-
dc.description.abstractVariational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert space H. Bounds for eigenvalues, comparison theorems, interlacing results, and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalizations of these principles to families of linear, self-adjoint operators depending continuously on a scalar in a real interval.en
dc.language.isoende_DE
dc.relation.ispartofElectronic transactions on numerical analysisde_DE
dc.subjectAMLSde_DE
dc.subjectFluid-solid interactionde_DE
dc.subjectIterative projection methodsde_DE
dc.subjectNonlinear eigenvalue problemde_DE
dc.subjectQuantum dotsde_DE
dc.subjectTotal least-squares problemsde_DE
dc.subjectVariational characterizationde_DE
dc.subjectViscoelastic dampingde_DE
dc.titleA survey on variational characterizations for nonlinear Eigenvalue problemsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishVariational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert space H. Bounds for eigenvalues, comparison theorems, interlacing results, and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalizations of these principles to families of linear, self-adjoint operators depending continuously on a scalar in a real interval.de_DE
tuhh.publisher.doi10.1553/etna_vol55s1-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume55de_DE
tuhh.container.startpage1de_DE
tuhh.container.endpage75de_DE
dc.identifier.scopus2-s2.0-85119983175-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDLampe, Jörg-
item.creatorGNDVoß, Heinrich-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidLampe, Jörg-
item.creatorOrcidVoß, Heinrich-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

35
Last Week
0
Last month
checked on Aug 15, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.