TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Towards synthetic AI training data for image classification in intralogistic settings
 
Options

Towards synthetic AI training data for image classification in intralogistic settings

Citation Link: https://doi.org/10.15480/882.4071
Publikationstyp
Conference Paper
Date Issued
2022
Sprache
English
Author(s)
Schoepflin, Daniel  orcid-logo
Iyer, Karthik  
Gomse, Martin  
Schüppstuhl, Thorsten  orcid-logo
Herausgeber*innen
Schüppstuhl, Thorsten  orcid-logo
Tracht, Kirsten  
Raatz, Annika  
Institut
Flugzeug-Produktionstechnik M-23  
TORE-DOI
10.15480/882.4071
TORE-URI
http://hdl.handle.net/11420/11390
Start Page
325
End Page
336
Citation
Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021: 325-336 (2022)
Publisher DOI
10.1007/978-3-030-74032-0_27
Publisher
Springer
Peer Reviewed
true
Obtaining annotated data for proper training of AI image classifiers remains a challenge for successful deployment in industrial settings. As a promising alternative to handcrafted annotations, synthetic training data generation has grown in popularity. However, in most cases the pipelines used to generate this data are not of universal nature and have to be redesigned for different domain applications. This requires a detailed formulation of the domain through a semantic scene grammar. We aim to present such a grammar that is based on domain knowledge for the production-supplying transport of components in intralogistic settings. We present a use-case analysis for the domain of production supplying logistics and derive a scene grammar, which can be used to formulate similar problem statements in the domain for the purpose of data generation. We demonstrate the use of this grammar to feed a scene generation pipeline and obtain training data for an AI based image classifier.
Subjects
Synthetic data
Training data generation
Image classification
Production supplying logistic
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding(s)
Entwicklung und prototypische Erprobung von intelligenten und modularen Ladungsträgern zur schnelleren und effizienteren Materialversorgung bei der Flugzeugproduktion  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

Schoepflin2022_Chapter_TowardsSyntheticAITrainingData.pdf

Size

471.69 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback