Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.4168
DC FieldValueLanguage
dc.contributor.authorSeifert, Christian-
dc.contributor.authorTrostorff, Sascha-
dc.contributor.authorWaurick, Marcus-
dc.date.accessioned2022-02-22T11:36:38Z-
dc.date.available2022-02-22T11:36:38Z-
dc.date.issued2021-09-28-
dc.identifier.citationOperator Theory: Advances and Applications 287: 205-220 (2022-01-01)de_DE
dc.identifier.isbn978-3-030-89397-2de_DE
dc.identifier.isbn978-3-030-89396-5de_DE
dc.identifier.urihttp://hdl.handle.net/11420/11741-
dc.description.abstractThe power of the functional analytic framework for evolutionary equations lies in its variety. In fact, as we have outlined in earlier chapters, it is possible to formulate many differential equations in the form (∂tM(∂t)+A)U=F. (∂ tM(∂ t)+A)U=F.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleContinuous dependence on the coefficients Ide_DE
dc.typeinBookde_DE
dc.identifier.doi10.15480/882.4168-
dc.type.dinibookPart-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.0172970-
tuhh.oai.showtruede_DE
tuhh.abstract.englishThe power of the functional analytic framework for evolutionary equations lies in its variety. In fact, as we have outlined in earlier chapters, it is possible to formulate many differential equations in the form (∂tM(∂t)+A)U=F. (∂ tM(∂ t)+A)U=F.de_DE
tuhh.publisher.doi10.1007/978-3-030-89397-2_13-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.4168-
tuhh.type.opusInBuch (Kapitel / Teil einer Monographie)-
dc.type.driverbookPart-
dc.type.casraiBook Chapter-
tuhh.container.startpage205de_DE
tuhh.container.endpage220de_DE
dc.rights.nationallicensefalsede_DE
tuhh.relation.ispartofseriesOperator theoryde_DE
tuhh.relation.ispartofseriesnumber287de_DE
dc.identifier.scopus2-s2.0-85124426496de_DE
local.status.inpressfalsede_DE
local.type.versionpublishedVersionde_DE
datacite.resourceTypeBook Chapter-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextopen-
item.creatorOrcidSeifert, Christian-
item.creatorOrcidTrostorff, Sascha-
item.creatorOrcidWaurick, Marcus-
item.mappedtypeinBook-
item.tuhhseriesidOperator theory-
item.creatorGNDSeifert, Christian-
item.creatorGNDTrostorff, Sascha-
item.creatorGNDWaurick, Marcus-
item.seriesrefOperator theory;287-
item.fulltextWith Fulltext-
item.openairetypeinBook-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-9182-8687-
crisitem.author.orcid0000-0003-4498-3574-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_ContinuousDependenceOnTheCoeff.pdfVerlags-PDF287,6 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

52
Last Week
1
Last month
checked on Aug 8, 2022

Download(s)

31
checked on Aug 8, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

This item is licensed under a Creative Commons License Creative Commons