Please use this identifier to cite or link to this item:
Publisher DOI: 10.1007/978-3-030-89397-2_14
Title: Continuous dependence on the coefficients II
Language: English
Authors: Seifert, Christian  
Trostorff, Sascha 
Waurick, Marcus 
Issue Date: 2022
Publisher: Springer
Source: Operator Theory: Advances and Applications 287: 221-241 (2022)
Abstract (english): 
This chapter is concerned with the study of problems of the form (∂t,νMn(∂t,ν)+A)Un=F (∂ t,ν Mn(∂ t,ν )+A)Un=F for a suitable sequence of material laws (Mn)n when A ≠ 0. The aim of this chapter will be to provide the conditions required for convergence of the material law sequence to imply the existence of a limit material law M such that the limit U =limn→∞Un exists and satisfies (∂t,νM(∂t,ν)+A)U=F. (∂ t,ν M(∂ t,ν )+A)U=F.
DOI: 10.15480/882.4169
ISBN: 978-3-030-89397-2
Institute: Mathematik E-10 
Document Type: Chapter (Book)
License: CC BY 4.0 (Attribution) CC BY 4.0 (Attribution)
Part of Series: Operator theory 
Volume number: 287
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Seifert2022_Chapter_ContinuousDependenceOnTheCoeff(1).pdfVerlags-PDF368,62 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Jun 10, 2023


checked on Jun 10, 2023

Google ScholarTM


Note about this record

Cite this record


This item is licensed under a Creative Commons License Creative Commons